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ABSTRACT

The analgesic and anti-inflammatory effects of the nonsteroidal anti

inflammatory drugs (NSAIDs) ketoprofen (2.2 and 3.63 mg/kg) and phenylbutazone 

(4.4 mg/kg) were compared in equine models of acute synovitis and chronic hoof 

pain. The eicosanoids, prostaglandin Ej (PGE?) and leukotriene B4 (LTB4), increased 

dramatically in synovial fluid after carrageenan-induced synovitis of the intercarpal 

joint. PGE2 concentrations in untreated horses peaked at 9 hours while LTB4 

concentrations peaked in all horses at 3 hours. Synovial fluid concentrations of both 

eicosanoids returned to near baseline by 48 hours. Lameness, joint temperature, and 

synovial fluid volume, protein and nucleated cells increased at 3 to 12 hours with 

reduction to near baseline levels by 48 hours. NSAIDs when given intravenously 

decreased joint concentrations of PGE^ but LTB4 levels were unaffected by drug 

administration. Both drugs decreased the signs of inflammation and lameness, but 

phenylbutazone was more effective. These data suggest that leukotrienes are involved 

in equine synovitis and the development of specific leukotriene inhibitors may be of 

therapeutic value. The plasma half-life of ketoprofen (2.2 mg/kg) in normal horses 

(0.88 hours) was higher than horses with synovitis (0.55 hours). Synovial fluid levels 

of ketoprofen in horses with synovitis were 6.5 times higher than normal horses at one 

hour. The area under the synovial fluid concentration curve for horses with synovitis 

was greater than in normal horses. These data suggest that the inflamed joint may 

serve as a site of sequestration for ketoprofen. Digital vein eicosanoid levels from
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horses with hoof pain from chronic laminitis were not different than those in normal 

horses. Although hoof pain and lameness could not be attributed to eicosanoids, both 

effects were reduced by the systemic administration of NSAIDs. Ketoprofen at a dose 

of 3.63 mg/kg (phenylbutazone equimolar dose) reduced hoof pain and lameness to 

a greater extent than the 2.2 mg/kg dose and phenylbutazone. These effects were still 

present at 24 hours for 3 of the 4 measures of hoof pain. These data suggest that 

phenylbutazone was more potent in alleviating acute joint inflammation whereas 

ketoprofen at a dosage rate of 1.65 times the therapeutic dose was more potent in 

alleviating chronic pain and lameness in horses.
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CHAPTER 1 

GENERAL INTRODUCTION

This dissertation is organized in the journal style. A global introduction and 

literature review precede separate chapters on specific themes, which are followed by 

a general conclusion chapter. The literature review (Chapter 2) encompasses three 

areas that were relevant to the course of this dissertation research: inflammation, pain 

and the use of nonsteroidal anti-inflammatory drugs to alleviate these conditions. 

Chapters 3 through 6 describe the development of models and analytical techniques 

along with the experiments used in the testing of the overall research hypothesis and 

specific objectives. Chapter 7 consists of an overall summary of results, conclusions 

and indications for future research.

This dissertation research was designed to bring further understanding to the 

mechanisms and alleviation of pain and inflammation in the horse. Inflammation 

occurs in many forms in the horse. This pathological process results in significant 

morbidity and often, mortality. Musculoskeletal inflammation in particular shortens 

the working life of the horse and results in considerable pain. Our treatment options 

at present are limited to a few steroidal and nonsteroidal agents that have been 

approved for use in the horse. Many of these products are older drugs that were 

originally used in humans. Researchers of nonsteroidal anti-inflammatory agents have 

tried to identify novel drugs that are more efficacious in relieving inflammation and 

pain than traditional drugs. This research has lead to the discovery of a more
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complex array of inflammatory mediators and modulators. Since the discovery of the 

pro-inflammatory leukotrienes, emphasis has been placed on developing inhibitors of 

lipoxygenase and specific leukotriene antagonists.

The research hypothesis of this dissertation is that nonsteroidal anti

inflammatory drugs (NSAIDs) that inhibit the cyclooxygenase and lipoxygenase 

mediated breakdown of arachidonic acid are potentially more effective alleviators of 

pain and inflammation than NSAIDs that solely inhibit cyclooxygenase. The overall 

objective of this research was to compare the putative cyclooxygenase and 

lipoxygenase inhibitor, ketoprofen to the cyclooxygenase inhibitor, phenylbutazone in 

equine models of acute joint inflammation and chronic pain. Prostaglandin Ej (PGEj) 

and leukotriene B4 (LTB4) were chosen as measures of cyclooxygenase and 

lipoxygenase activity, respectively, based on their potent inflammatory and pain 

mediating properties. Specific objectives were as follows:

1) Develop a self-limiting, reproducible model of acute synovitis which 

increases prostaglandin Ej (PGEj) and leukotriene B4 (LTB4) concentrations in 

synovial fluid and produces other measurable joint inflammatory responses.

2) Compare the magnitude and time course of the anti-inflammatory and 

eicosanoid inhibitory effects of ketoprofen and phenylbutazone in the acute synovitis 

model.

3) Compare the ability of ketoprofen and phenylbutazone to reduce the clinical 

signs of acute synovitis.
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4) Compare the time course of the anti-inflammatory effects of ketoprofen with 

its plasma and synovial fluid drug concentrations.

5) Determine whether digital vein eicosanoid concentrations are greater in 

horses with chronic laminitis than normal horses.

6) Providing that there are higher eicosanoid concentrations in laminitic versus 

normal horses, correlate the severity of hoof pain with the eicosanoid concentrations.

7) Determine the magnitude and time course of the eicosanoid inhibitory effects 

of ketoprofen and phenylbutazone in horses with chronic laminitis.

8) Objectively quantitate and compare the analgesic effects of ketoprofen and 

phenylbutazone in horses with chronic hoof pain associated with chronic laminitis.
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CHAPTER 2

LITERATURE REVIEW

A. Introduction

This review will focus on the specific types of inflammation and pain 

associated with the experimental models used in this dissertation research. Emphasis 

will be placed on the particular drugs and eicosanoids which influence inflammation. 

Experimental models of joint inflammation will be discussed. In particular, 

carrageenan-induced joint inflammation and the clinical diseases of arthritis, synovitis 

and chronic laminitis will be reviewed in detail. The properties of the eicosanoids, 

prostaglandin Ej and leukotriene B4 will be discussed as well as the inhibition of these 

substances by the nonsteroidal anti-inflammatory agents (NSAIDs), ketoprofen and 

phenylbutazone. A discussion of acute and chronic pain will also be included.

B. Inflammation

Inflammation is a local, defensive process elicited by tissue insult resulting 

ultimately in destruction, dilution or isolation of the offending agent and injured 

tissues. This dynamic process in most cases restores homeostasis, but if unregulated 

may have deleterious effects on the affected tissue or organ. Inflammation was 

originally described by the first century writings of the Roman, Cornelius Celsus as: 

rubor et tumor cum calore et dolore, "redness (erythema) and swelling (edema) with 

heat and pain (nociception and hyperalgesia)." The founder of modem cellular 

pathology, Rudolph Virchow, added the fifth cardinal sign of inflammation, functio

4
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laesa or loss of function [1]. Inflammation typically occurs in three phases: 1) an 

acute transient phase characterized by local dilation of arterioles, capillaries, and 

venules resulting in increased blood flow and increased vascular permeability with 

exudation of fluids and plasma proteins; 2) a delayed subacute phase marked by 

infiltration of leukocytes and phagocytic cells; and 3) the chronic proliferative phase 

in which tissue degeneration and fibrosis lead to healing or chronic inflammation. 

[2,3].

1. Stimuli

Inflammation may be elicited by a number of stimuli including: infectious 

agents such as microbial organisms and parasites, ischemia, antigen-antibody 

interactions, exposure to radiation or electrical energy, extreme temperatures, 

mechanical trauma and noxious chemicals [3,4]. Experimentally, chemical irritants 

have been used extensively to mimic the inflammatory response.

Regardless of the etiology, most forms of acute and chronic inflammation 

involve the cellular and humoral components of the immune system. The inciting 

cause is first recognized as a foreign antigen by surface antibodies on B lymphocytes 

or via macrophage presentation to receptors on T lymphocytes. This recognition leads 

to the production of pro-inflammatory substances which result in transitory 

vasoconstriction followed by arteriolar and precapillary vasodilation, capillary 

recruitment, and increased vascular permeability due to contraction of endothelial 

cells. Fluid and protein exudation follow as blood flow is first increased then 

decreased resulting in hyperemia and congestion. Leukocytes marginate within the
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vessels and adhere to vascular endothelium. Ultimately, these cells migrate to the 

inflammatory locus and begin degranulating, leading to destruction of the inciting 

agent and surrounding tissue. Destruction of the antigen is the responsibility of the 

phagocytic cells: neutrophils; monocytes and in some cases, eosinophils. The tissue 

macrophages, e.g. Kupffer cells and type-A synovial lining cells, also play important 

local roles [2,4].

2. Mediators

a. Eicosanoids

Inflammation is mediated and in some cases modulated by various autocoids 

or local hormones. The eicosanoids are a family of lipid-derived autocoids that 

include the prostaglandins, thromboxanes, leukotrienes and the lipoxins. Eicosanoids 

are derived from 20-carbon polyunsaturated essential fatty acids [5]. Arachidonate is 

the most abundant precursor of the eicosanoids and it is derived from dietary linoleic 

acid. Arachidonic acid is then esterified to the phospholipids of cell membranes or 

other complex lipids.

i. Release o f arachidonate

Arachidonic acid is released from cellular lipids de novo by acyl hydrolases. 

This release is closely regulated and occurs in response to reduced oxygen tension, 

thrombin generation, hormones, immunologic reactions, ultraviolet light, tumor- 

producing agents or other irritant stimuli that interact with membrane bound receptors 

coupled to guanine nucleotide-binding regulatory proteins. These G proteins then 

either directly activate phospholipase C and or A2 or indirectly activate these enzymes
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through an increase in cytosolic calcium. Phospholipase A2 hydrolyzes the ester bond 

of membrane phospholipids such as phosphatidylcholine and phosphatidylethanolamine 

to release arachidonate. Phospholipase C cleaves the phosphodiester bond, resulting 

in the formation of a 1,2-diglyceride leading to the release of arachidonic acid [6]. 

Once arachidonic acid is freed it may be acted upon by the cyclooxygenase or the 

lipoxygenase enzyme systems to produce eicosanoids (Figure 1). In addition, 

arachidonic acid may be metabolized by the epoxygenase pathway in neutrophils 

through a cytochrome P-450-dependent mixed-function oxidase leading to the 

formation of unstable epoxides [7].

ii. Enzymes

The first enzyme in the production of prostaglandins is prostaglandin 

endoperoxide synthase or as it is more commonly called, fatty acid cyclooxygenase. 

This microsomal enzyme is present in all cells, except mature erythrocytes [6]. This 

enzyme has two activities; one is an endoperoxide synthase activity that oxygenates 

and cyclizes arachidonate acid to form the cyclic endoperoxide prostaglandin G2 

(PGG2) and a peroxidase activity that converts PGG2 to prostaglandin H2 (PGHj) by 

reducing the 15-hydroperoxy group to a 15-hydroxy. Isomerases synthesize 

prostaglandin E* (PGEj), prostaglandin D2 (PGD^ and prostaglandin (PG F^ from 

PGH2. The unstable endoperoxide PGH2 is also metabolized to thromboxane A2 

(TXAj) and prostacyclin (PGI2) [8], The specific prostaglandins produced vary with 

different cells or tissues depending upon the synthases and isomerases present [9]. 

Lipoxygenase enzymes are found in the pulmonary tissue, platelets and leukocytes [6].
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Figure 1: Enzymatic release and metabolism of arachidonate.
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Lipoxygenases are a group of membrane-associated enzymes that oxygenate 

polyunsaturated fatty acids to lipid hydroperoxides [10]. The enzymes require a fatty 

acid substrate with two cis double bonds separated by a methylene group and are 

regulated by the presence of calcium [6]. The arachidonate metabolites of 

lipoxygenase are called hydroperoxyeicosatetraenoic acids (HPETEs). This enzyme 

system, like the cyclooxygenase enzyme, goes through an activation phase where it 

generates metabolites that act as positive and then negative feedback regulators 

[10,11]. Lipoxygenases differ in their specificity for placing the hydroperoxy group 

and tissues differ in the lipoxygenases they contain. For instance, platelets have only 

12-lipoxygenase while leukocytes have 5-, 12-, and in some species, 15-lipoxygenases 

[12]. The HPETEs are unstable intermediates analogous to PGG2 or PGH2 and are 

further degraded by a series of enzymes. HPETEs may be converted to hydroxy fatty 

acids (HETEs) by a peroxidase or nonenzymatically. In a relatively newly elucidated 

pathway 12-HPETE can undergo a molecular rearrangement to form the hepoxillins 

while 15-HPETE may be converted by leukocytes to the lipoxins [6]. The 5- 

lipoxygenase enzyme leads to the synthesis of the pro-inflammatory leukotrienes 

through the metabolite, 5-HPETE. Leukotriene A synthase catalyzes the formation 

of the unstable 5,6-epoxide leukotriene A4 (LTA4) from 5-HPETE. Leukotriene B4 

(LTB4) or (5S, 12R)-dihydroxy-6,14-cw-8, lO-f/ww-eicosatetraenoic acid is formed 

from LTA4 by LTA hydrolase. Alternatively, LTA4 can be nonenzymatically 

hydrolyzed to diastereomers of 5,6-dihydroxyeicosatetraenoic acid (5,6-diHETE), and 

6,8,10-rra/w-14-c«-diastereomers of 5,12-diHETE [13]. These hydrolysis products
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have little biological importance as compared to LTB4. In a separate microsomal 

pathway, LTA4 may be conjugated with glutathione at the 6 position to form the 

sulfidopeptide leukotrienes: LTC4, D4, E», and F4. LTC4, LTD4 and LTE4 are also 

known as the slow-reacting substances of anaphylaxis [13]. 

mi. Prostaglandins 

Prostaglandins are named according to substitutions on the cyclopentane ring 

and numbered according to the number of double bonds in the alkyl side chains [5]. 

The number 1 carbon is located at the carboxyl terminus. Prostaglandins of the 

subscript 2 series are the major ones in mammals and this nomenclature denotes 

derivation from arachidonic acid whereas the subscript 1 and 3 series may come from 

other polyunsaturated fatty acid precursors [5,14]. Prostaglandins of the E and D type 

are hydroxy ketones while the F a series are 1,3 diols [6]. Many tissues have specific 

prostaglandin receptors through which cell function is regulated via two second 

messenger systems: regulation of intracellular synthesis of cyclic AMP by activation 

or inhibition of adenylate cyclase and stimulation of phospholipase C resulting in the 

formation of inositol-1,4,5-triphosphate leading to a rise in intracellular calcium. 

These messenger systems in turn regulate various protein kinases which control 

cellular activity [6].

By most reports, the predominant stable prostaglandin product of leukocytes 

is PGEj [15]. PGEj produces long lasting dermal erythema and increased blood flow 

in cutaneous vessels and superficial vessels. PGE2 produces little plasma exudation 

alone, but potentiates exudation after injection of chemical irritants, histamine and
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bradykinin [16,17]. Prostaglandins increase vascular permeability in conjunction with 

serotonin and bradykinin by inducing vascular leakage in venules [18]. The effect 

of PGE2 on plasma exudation has been studied in the skin of horses [19]. When PGE2 

was co-administered with bradykinin the volume of plasma exudate increased 

markedly. This synergistic effect was not seen with PGEj and histamine in equine 

skin. PGEj has similar activities as PGEj, but it is less abundant [6]. In contrast to 

other species, PGE2 is chemotactic for equine neutrophils at concentrations of 1 and 

10 ng/ml [20].

The functions of T and B cells are modified by PGEj in vitro at concentrations 

similar to inflammatory exudates (10-8 M). Secretion of interleukin-2 is inhibited by 

PGE2 in T cells accounting for inhibition of mitogen and antigen-induced T cell 

proliferation by PGEj [9]. This inhibition and the inhibitory effects of PGEj on B cell 

proliferation is associated with elevated intracellular levels of cyclic AMP [9,18]. 

Human rheumatoid T cells are particularly susceptible to this effect of PGEj which 

leads to a deficient production of interferon and other lymphokines [9]. Several other 

inflammatory modulation activities have been demonstrated by PGE, and PGE2 such 

as: inhibition of LTB4 production [21], inhibition of lysosomal enzyme release [22], 

inhibition of 0 2 release and inhibition of neutrophil activation [23]. Thus, there 

appear to be paradoxical anti-inflammatory properties as well as pro-inflammatory 

effects associated with prostaglandins.

Prostanoids are not stored but are synthesized de novo and rapidly metabolized 

and excreted in the urine. TXA2 and PGI2 hydrolyze in less than 2 minutes to the
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more stable compounds, TXBj and 6-keto PGFlo, respectively [9]. PGF2a can be 

metabolized by a 9-keto reductase to form PGEj in some tissues [6]. PGEj is 

metabolized initially to 15-keto-13, W-dihydro-PGEj [24]. This reaction is catalyzed 

by 15-hydroxy prostanoate dehydrogenase and A13-reductase which are present in most 

tissues, but are found in high concentrations in the liver, kidney and lung [24]. The 

metabolites of prostaglandins are cleared from the circulation very quickly [25] by one 

or two steps of /?- and w-oxidation in the lung and liver [24,26]. 

iv. Leukotrienes

Leukotrienes of the subscript 4 series are derived from arachidonic acid. Other 

polyunsaturated fatty acid precursors give rise to the 3 and 5 series [5]. Receptors for 

LTB4, LTC4 and LTIVLTE* have been identified which respond by activation of 

phospholipase C. LTB4 receptors have been found on neutrophils and monocytes, 

while receptors for LTD4 and E4 have been found on smooth muscle cells [6].

LTB4 promotes leukocyte adherence, chemotaxis and degranulation [27,28]. 

The chemotactic properties of LTB4 are particularly potent, both in vitro and in vivo. 

This activity is dependent upon the cis-trans-trans-triene structure [13]. LTB4 has 

been demonstrated to be a potent chemotactic agent for equine [20] and bovine 

neutrophils [29]. In the horse, maximum chemotactic activity is reported to be 

obtained at concentrations that are higher than other species [20]. LTB4 promotes the 

secretion of inflammatory products by neutrophils including active oxygen molecules, 

hydrogen peroxide, superoxide and hydroxyl radical and other degradative enzymes 

[30]. Also, LTB4 increases vascular permeability and plasma exudation in the cheek
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pouch [13] and this effect is greatly potentiated by the co-administration of bradykinin 

or PGE2 in the rabbit, guinea pig and rat [31,32]. LTC4 and LTB4 may stimulate the 

production of gamma interferon. LTB4 is a potent inhibitor of human T cell 

mitogenesis. This inhibition may be accounted for by the ability of LTB4 to induce 

maturation and enhance the activity of T-suppressor and cytotoxic cells [9]. LTA4 can 

be transcellularly metabolized to LTB4 by erythrocytes or in blood plasma [10,33]. 

The w-oxidation enzymes responsible for metabolism and inactivation of these 

compounds are part of the cytochrome P-450 family and like the prostaglandins utilize 

P-450 reductase [10]. The neutrophil is primarily responsible for sequestering and 

metabolizing LTB4 to 20-hydroxy-LTB4 which is then excreted in the urine [10]. 

However, complete /8-oxidation accounts for the major route of metabolism for LTB4 

[34].

b. Other mediators 

Vasoactive amines, kinins, cytokines, plasma-derived factors, leukocytic 

products and phospholipid products play important roles in the pathogenesis of 

inflammation. Many of these mediators act synergistically with the eicosanoids in 

perpetuating inflammation as well as pain.

Histamine was one of the first chemicals described as an inflammatory 

mediator. When released by basophils, mast cells and platelets, it initiates the early 

vascular responses and maintains this effect for 30 to 60 minutes [4]. Intradermally 

administered histamine produces arteriolar dilation and also results in a flare of 

erythema in the surrounding tissue. The kinins, bradykinin and kallidin are liberated
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by the action of kallikrein enzymes on serum kininogen [4], Bradykinin and histamine 

potentiate vascular permeability in conjunction with the eicosanoids [17]. Bradykinin 

has been shown to stimulate phospholipase A2 activity and PGE2 release [35]. 

Serotonin and histamine increase vascular permeability exclusively at the level of the 

post-capillary venules [36]. Serotonin also has vasodilatory properties. However, the 

actions of serotonin differ among animal species. In rodents this amine is contained 

within tissue mast cells and has permeability increasing properties. This property is 

not shared by man or many other species [36].

The volume of plasma exudation following intradermally administered 

histamine, bradykinin, serotonin or the E-series of prostaglandins varies between 

species [19]. Histamine and bradykinin, but not serotonin, produced circular lesions 

when injected intradermally into thoracic skin of horses [19]. According to this study, 

histamine was more potent than bradykinin on a molar basis in producing vascular 

leakage and lesion formation in the horse.

Interleukin-1 is a polypeptide produced in macrophages, synovial fibroblasts 

and other cells after infection, injury or antigenic challenge. This cytokine has 

hormone-like effects systemically, but also produces distinct local effects. It acts as 

a pro-inflammatory substance by inducing endogenous pyrogen fever, stimulating 

cellular metabolism and promoting eicosanoid release [37]. Blockade of the 

interleukin-1 receptor inhibits PGEz and LTB4 generation in human monocytes [38]. 

Interleukin 1 acts synergistically with many other cytokines including tumor necrosis 

factor [37]. Tumor necrosis factor is also associated with eicosanoid production [39].



www.manaraa.com

15

Plasma derived factors such as complement also potentiate the release of the 

eicosanoids from cells [18,40]. Complement fragments and prostaglandin act 

synergistically to produce intradermal edema in rabbits [36,41].

Neutrophils are known to release prostaglandins of the E type during 

phagocytosis and release of lysosomal enzymes [18]. The lysosomal products of 

neutrophils are classified as: cationic proteins, acid proteases and neutral proteases. 

These enzymes are responsible for increased vascular permeability, chemotaxis of 

monocytes and immobilization of neutrophils, degradation of basement membranes 

under an acid pH, release of kinin from plasma kininogen and the degradation of 

collagen, elastin, renal basement membrane, cartilage and fibrin [1].

The tachykinin neuropeptides, substance P, neuropeptide Y, calcitonin gene- 

related peptide and the neurokinins A and B play important roles in the regulation of 

inflammation and immune response in peripheral tissues and in the central nervous 

system [42]. Substance P is most likely responsible for the local flare response after 

intradermally injected histamine. This neurokinin is also thought to mediate 

neurogenic inflammation as it induces increased vascular permeability after stimulation 

of C-fibers [36].

Platelet-activation factor, like the eicosanoids, is derived from membrane 

phospholipids and is synthesized de novo. This compound is produced by 

inflammatory cells, platelets, endothelial cells and renal tissues. It induces 

bronchospasm, hypotension, neutropenia, thrombocytopenia, increased vascular 

permeability and is chemotactic for leukocytes [6].
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3. Models of acute inflammation

Inflammatory models used to assess the potencies and duration of action of 

anti-inflammatory drugs in animals include the intradermal or subcutaneous injection 

of carrageenan, zymosan, Bordetella pertussis, and immune complexes [43]. Dermal 

inflammation has been produced by the application of ultraviolet light [44], 

inflammatory mediators [41] and compound 48/80 [41,44-46]. The mammary gland 

of ruminants has been used as a unique acute inflammation model. Intramammarily 

injected lipopolysaccharides in goats produced a self-limiting inflammation that 

resolves within one week [47], Many of these models are also used in pain research 

and in some cases they may produce a chronic inflammation.

a. Subcutaneous inflammation

Most models of subcutaneous inflammation involve the injection of 

carrageenan. These models were developed in laboratory rodents and have been 

adapted for use in the horse. Other methods of producing subcutaneous inflammation 

in the horse have been reported such as the subcutaneous injection of a counterirritant 

consisting of iodine, ether and soybean oil [48]. This method was used to test the 

antiinflammatory effects of the metalloprotein, orgotein. 

i. Carrageenan

The sulphated mucopolysaccharide carrageenan has been used experimentally 

to produce local inflammation in rabbits, rats, dogs, horses and pigs [49-53]. The 

major source of carrageenan is the alga Chondrus crispus which grows abundantly in 

the area known as Carragheen near Waterford, Ireland. Carrageenan can also be
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extracted from the seaweed Gigartina stellata. The extracted mucopolysaccharide can 

be treated with potassium chloride to form two fractions: the gel fraction, k -  

carrageenan, and the non-gel forming X-carrageenan. A-Carrageenan is primarily 

composed of sulfated D-galactose residues with a molecular weight between 3.5 and 

4 x 105. A-Carrageenan is the more potent fraction in producing acute and chronic 

inflammation, anticoagulation and toxicity. Carrageenan when administered 

subcutaneously appears to be very poorly absorbed systemically. However, some 

absorption may occur in the rat [54].

The toxicity of intradermal carrageenan is thought to progress through a 

complicated pathway that was elucidated by Vinegar, et al. [55]. The inflammatory 

response to carrageenan is thought to be mediated by histamine, serotonin, bradykinin, 

the eicosanoids [54] and activation of the complement system [56]. After injection of 

carrageenan into the rat paw it is absorbed by mast cells resulting in cytoplasmic 

injury and degranulation with initiation of the arachidonic acid cascade. Hyperemia 

and an increase in tissue osmotic pressure ensues along with direct damage to 

endothelial cells by carrageenan. Within 90 to 240 minutes, neutrophils infiltrate the 

damaged tissue and phagocytize remaining carrageenan. Carrageenan causes 

degranulation of lysosomes resulting in cellular lysis and further arachidonic acid 

release. PGEj and bradykinin are thought to be the primary mediators of the 

exudation of fluid within the first few hours of inflammation [57]. The eicosanoids 

are responsible for the hyperemia, increased vascular permeability and hyperalgesia 

that follows. By 12 hours the monocytes infiltrate the damaged tissue to phagocytize
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the cellular debris. These cells may also experience lysosomal rupture or they may 

retain partially degraded carrageenan for extended periods [54,58]. Fibroblast 

proliferation occurs after 2 to 8 days and the tissue returns to normal by 15 days post

injection [55].

Carrageenan was first used as a phlogistic agent to produce subplan tar 

inflammation in the rat paw by Benitz and Hall in 1959 [59], and described in detail 

by Winter in 1962 [60]. Inhibition of the edema produced by subcutaneously 

administered carrageenan is commonly used by the pharmaceutical industry to evaluate 

NSAIDs [60]. Subplan tar carrageenan in the rat hind paw model results in peak 

inflammatory swelling by 4 hours after injection [61]. The same authors have 

reported that subcutaneous carrageenan in the neck of rats results in peak swelling by 

16 hours. In these models edema is measured in the rat paw by plethysmography and 

mercury displacement and by neck circumference [62]. Other researchers have used 

subcutaneous carrageenan in the rat to form an abscess that may be removed and 

weighed [44]. PGEj has been measured in the rat hindpaw after carrageenan 

injection. The animals were euthanized and 100 grams of tissue were then extracted 

and assayed for PGE^ [63]. Carrageenan has been administered subcutaneously in the 

thoracic region of horses in an effort to produce a model for NSAID evaluation. 

There was an increase in lesion diameter and plasma extravasation for 5 hours after 

administration [19].

Many of these workers use a 2% solution of carrageenan in water or isotonic 

saline. However, the optimal strength of a solution of carrageenan in producing
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inflammatory effects was 1 % as determined by Gardner [49] in guinea pig skin. He 

noted little increase in inflammation with the 2% solution, while the higher viscosity 

of this solution made it difficult to inject.

These subcutaneous models are limited to the measurement of edema and pain 

in response to paw pressure. Other models have been developed for the measurement 

of white blood cells, protein, enzymes, drugs and inflammatory mediators in the 

exudate. Polyester sponges soaked with 2% carrageenan have been implanted 

subcutaneously along the ventral midline in rats [50,64-66]. The sponges are 

removed, immersed in heparinized saline, centrifuged and the supernatant assayed for 

PGE2. This method allows for the determination of leukocyte numbers and protein 

concentration as well as drug concentration in the inflammatory exudate.

Higgins and Lees [67,68] describe two experimental models of non-immune 

inflammation in the ponies using carrageenan as the inflammatory agent that were 

adapted from rodent models. In one model, sterile carrageenan-impregnated polyester 

sponge strips were implanted into subcutaneous neck pouches in ponies. The second 

model involved the insertion of polypropylene tissue cages subcutaneously into the 

necks of ponies. Carrageenan was injected intracaveally into the cages. Sponges and 

exudate from the tissue cages were removed in a serial fashion and assayed for 

eicosanoids, protein and cellularity. PGEj, TXBj and 6-keto-PGFla were detected in 

inflamed fluid obtained from both models [69-71]. LTB4 was also detected in the 

inflammatory exudates of both models [69,72,73]. Mean total leukocyte counts and 

total protein were increased in both models after carrageenan stimulus. PGEj and
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LTB4 have been identified and quantified by radioimmunoassay (RIA) in carrageenan- 

induced inflammatory exudates from several species as seen in Tables 1 and 2.

b. Synovitis

i. Joint anatomy

Diarthrodial joints consist of articulating surfaces of bone covered by hyaline 

cartilage, a synovial membrane, synovial fluid within the joint cavity, a joint capsule, 

and surrounding ligamentous structures. The equine synovial membrane is more 

villous than other animals and the villi may project considerably into the joint space 

[74]. The synovial membrane is a modified mesenchymal tissue consisting of two 

layers [75]. The intima is made up of an incomplete cell layer that overlies the 

subintimal connective tissue layer. These layers constitute a selective barrier in the 

joint that allows for the passage of molecules of less than approximately 12,000 

daltons in molecular weight [76]. The synoviocytes of the intimal layer are usually 

1 to 4 cells thick and are not connected by desmosomes or supported by a basement 

membrane [77]. The synovial lining cell layer is often incomplete in the horse [74] 

and human [77]. Synoviocytes are pleomorphic, but have been classified into two 

types in many species, including the horse [78,79]. Type A synoviocytes resemble 

macrophages structurally and functionally and may be part of the mononuclear 

macrophage system [80]. Type B cells appear to be more like fibroblasts in that they 

contain large amounts of endoplasmic reticulum [79] and may secrete hyaluronic acid 

into the joint fluid [77]. These cell types most likely represent distinct cell 

populations rather than different functional states of the same cell line as the type A
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Table 1: Mean peak PGE2 concentrations from carrageenan-induced inflammation models.

METHOD/
SPECIES

TIME OF PEAK 
CONCENTRATION

PEAK
CONCENTRATION

(ng/ml)

ANALYTICAL
METHOD

REF.

Tissue
cage/horse

12 hrs. 197.0 RIA [70]

Tissue
cage/horse

8 hrs. 84.8 RIA [69]

Tissue
cage/horse

12 hrs. 66.4 RIA [71]

Sponge/horse 4 hrs. 12.2 RIA [73]

Sponge/horse 12 hrs. 12.8 RIA [70]

Sponge/rat 8 hrs. 20-30 RIA [65]

Sponge/rat 24 hrs. 65.0 RIA [66]
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Table 2: Mean peak LTB4 concentrations from carrageenan-induced inflammation models.

METHOD/
SPECIES

TIME OF PEAK 
CONCENTRATION

AVG. PEAK 
CONCENTRATION 

(ng/ml)

ANALYTICAL
METHOD

REF.

Tissue cage/horse 8 hrs. 1.74 RIA [72]

Tissue cage/horse 4 hrs. 2.50 RIA [69]

Sponge/horse 4 hrs. 9.60 RIA [73]
Sponge/rat 6 hrs. 6.90 RIA [65]
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cell, unlike the B cell, may be derived from the bone marrow [77]. Unlike epithelial 

cells, the rate of cell division in synovial lining cells from normal joints is low [77]. 

Blood vessels, lymphatics and myelinated and nonmyelinated nerve fibers are found 

in the subintimal layer. The majority of the nerve endings have been described in the 

fibrous joint capsule with some free nerve endings in the membrane [75], The nerve 

supply to the membrane appears to be primarily vasomotor in nature. However, 

nociceptive fibers have been demonstrated in the synovial membrane of humans [81]. 

Further, the equine synovial membrane has evidence of sensory innervation with 

neuropeptide transmitters located perivascularly [82].

ii. Pathophysiology 

Synovitis is characterized by inflammation of the synovium without gross 

disturbance of the articular cartilage or disruption of major supporting structures. 

Non-infectious synovitis results from physical or chemical damage to the soft tissue, 

such as by repetitive overextension, subluxation or intra-articular injection of 

chemicals [83]. Synovitis involves the classic mediators and modulators of 

inflammation: histamine, serotonin, prostaglandins, leukotrienes and lysosomal 

products along with the activation of the kinin, complement and clotting systems [84].

During synovitis, hypertrophy and hyperplasia of the synovium occur, and an 

increased number of synovial lining cells are found in the synovial fluid [79,85,86]. 

An increase in vascularity of the synovial villi occurs and inflammatory cells infiltrate 

the subintimal layer. Degenerative changes in equine synoviocytes that occur during 

synovitis include: increase in organelles including lysosomes; dilation and vesiculation
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of the rough endoplasmic reticulum; mitochondrial condensation; dilation of the 

nuclear envelope; and ultimately, loss of plasma membranes [79]. Lysosomal enzymes 

and collagenase produced by synoviocytes, chondrocytes and inflammatory cells 

perpetuate the synovitis and may degrade the cartilage matrix leading to arthritis [80]. 

Also, these lysosomal enzymes, along with hyaluronidase and oxygen-derived free 

radicals produced by neutrophils and macrophages are capable of degrading hyaluronic 

acid [80,83,84]. Interleukin-1 produced by macrophages and synoviocytes induces the 

production of PGEj, neutral proteases and collagenase by synoviocytes and 

chondrocytes [87-89]. PGE2 inhibits proteoglycan synthesis in articular cartilage [80] 

and is a potent vasodilator in the synovial microcirculation [90]. Substance P also 

stimulates the production of PGE2 and collagenase by rheumatoid synoviocytes [91]. 

This neuropeptide has been demonstrated in perivascular neural filaments from normal 

equine synovia and in synovial fluid. Elevated concentrations were found in arthritic 

middle (intercarpal) joints as compared to normal joints [92].

iii. Clinical signs

Clinical signs of acute synovial inflammation include: synovial effusion with 

distension of the joint capsule; increased skin temperature over the joint; hypertrophy 

and hyperplasia of the synovia resulting in a palpable thickening of the membrane; a 

decrease in the range of motion of the joint; and lameness in the affected limb. 

Synovial effusion develops as the result of an imbalance between production and 

removal of synovial fluid [75]. Inflammatory mediators such as bradykinin, 

prostaglandins and histamine increase synovial membrane vascular permeability [17]
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and the metabolic rate of synoviocytes [37]. As the inflammation progresses, the 

permeability of the synovial membrane increases and proteins accumulate in the joint 

resulting in an increase in fluid osmotic pressure. Local production of thromboxanes 

from platelet aggregation cause congestion of the microvascular bed leading to 

congestion and heat production [93]. As fluid accumulates within the joint, the 

synovial pressure rises leading to joint instability and a reduction in the effective blood 

supply to the articular cartilage. Hypoxic acidosis and lowered glucose concentration 

in the fluid may result in a decreased nutritional state of the cartilage [83].

A decrease in the range of motion in these joints results from the edema, 

hypertrophy and hyperplasia of the synovial membrane [83]. The effusion of synovial 

fluid often results in pain and overt lameness [94]. In humans there is a positive 

linear correlation between intra-articular pressure and joint pain [95]. The 

inflammatory mediators released by local tissue destruction in the joint activate 

nociceptors and also sensitize these receptors through lowering of activation thresholds 

[96,97]. The neuromediators such as substance P from primary afferent neurons and 

the interaction of norepinephrine with sympathetic postganglionic neurons in the 

synovium further result in hyperalgesia and potentiation of the inflammatory response 

[98]. These factors contribute to the process known as neurogenic inflammation 

which is an important component of rheumatoid arthritis and other forms of joint 

inflammation [99],
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iv. Experimental induction 

Synovitis has been experimentally induced in horses, ponies, calves, dogs and 

rats by the intra-articular injection of a variety of chemical substances. The intra- 

articular injection of monosodium urate crystals in dogs [100,101] and calves 

[102,103] has been used as a model of the synovitis that occurs during gouty arthritis. 

Autogenous hyaline cartilage has been used to produce acute synovial inflammation 

in dogs [104].

The metalloprotein orgotein, which is often administered intra-articularly as 

an anti-inflammatory agent, has been shown to produce a marked inflammatory 

response in horses characterized by an increase in leukocytes and protein within 24 

hours [86]. This inflammatory reaction lasted for up to one week. Sodium 

monoiodoacetate has been used to induce synovitis in immature horses [105]. 

Inflammatory changes were seen 12 hours after injection. No articular cartilage 

damage was seen after 14 days. Synovitis has been induced in horses [39] and ponies 

by the intra-articular injection of E. coli lipopolysaccharide into the intercarpal joint 

[106,107]. These authors suggested that this model mimics acute bacterial infection. 

The horses with endotoxin-induced synovitis had peak PGE2 and tumor necrosis factor 

levels two hours after injection. The ponies in the study by Firth et al. became lame 

within 2 hours and the synovial fluid protein, leukocyte and alkaline phosphatase 

levels increased significantly by this time post-injection [106]. Synovial fluid analyses 

showed abnormalities even at 6 days post-injection. In addition, there were marked
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changes in attitude, temperature, appetite, arterial pressure, pulse and respiration. 

These abnormalities persisted for up to 20 hours for some parameters.

In a series of experiments by Lowther and Gillard [108-110], carrageenan was 

injected into rabbit stifles. A single injection of sterile carrageenan (0.3 ml of a 1 % 

solution of carrageenan in water) produced synovitis with an increase in synovial 

tissue levels of cathepsin D and acid phosphatase, two lysosomal enzymes. When 

more than two injections were administered into the same joint, visible cartilage 

erosion was seen. The single injection produced a decrease in the rate of 

proteoglycan synthesis corresponding to a 40% loss in glycosaminoglycan content in 

the articular cartilage for 3 to 7 days after injection. The rate of synthesis of 

proteoglycan increased significantly in the following days resulting in a net 

replacement of proteoglycans lost during the early phase of inflammation. The 

authors also established by autoradiographic studies that very little carrageenan 

penetrated the cartilage matrix. They concluded that the inflammatory response in the 

synovium affects the synthetic ability of the articular cartilage. It has been postulated 

that the pathophysiology of carrageenan-induced joint inflammation includes a 

component of neurogenic inflammation as the pretreatment of carrageenan injected 

joints with capsaicin or a substance P antagonist resulted in a significant suppression 

in inflammation [111].

Carrageenan was used to induce synovitis in the intercarpal joint of the horse 

in order to evaluate the superoxide production by stimulated neutrophils and the 

inhibition of this effect by NSAIDs in vitro [52]. The authors described a dramatic
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increase in synovial fluid leukocyte numbers which peaked at 4 hours and an increase 

in synovial fluid lysosome concentration which peaked at 24 hours. They did not 

describe the severity or time course of the clinical effects of carrageenan-induced 

synovitis such as lameness, heat production and joint effusion. Further, the quality 

and quantity of the synovial fluid was not discussed.

The above described substances used to produce synovitis vary markedly in the 

severity and duration of inflammation they caused. Some of these compounds have 

the potential to produce cartilage damage (see arthritis section) and in some cases 

result in systemic alterations.

c. Arthritis

i. Pathophysiology 

Some degree of synovitis occurs in most types of equine joint disease. In the 

majority of these diseases, the synovial inflammation varies only in intensity [75]. 

Mcllwraith [112] has suggested that the inciting cause of degenerative joint disease is 

synovitis rather than direct damage to the cartilage. The relationship between the 

synovium and articular cartilage is complex and in vitro and in vivo evidence suggests 

that structural and function alteration in one tissue intimately affects the other [83].

Traumatic arthritis or osteoarthritis occurs as a result of inherent instability or 

trauma to the articular cartilage or subchondral bone [83]. Osteoarthritis is associated 

with degeneration of the articular cartilage resulting in splitting and fragmentation 

(fibrillation) with resorption and sclerosis of bone (ebumation in severe cases) and 

synovitis [75,113]. In horses, the term degenerative joint disease is used to
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distinguish chronic inflammation resulting in degenerative changes from acute joint 

inflammation [114].

One consistent feature of the articular cartilage in equine degenerative joint 

disease is the decrease in glycosaminoglycans [76]. The loss of these proteoglycan 

aggregates may be mediated by interleukin-1 and PGE^ from the synovia and 

chondrocytes which activate neutral metalloproteoglycanases [80]. The inflamed 

synovial membrane is also a source for the degradative lysosomal enzymes and 

reactive oxygen species which lead ultimately to cartilage degeneration [76].

ii. Experimental induction 

Experimental arthritis has been induced in laboratory animals by the intra- 

articular injection of the polyene antibiotic filipin [115,116], fibrin complexes [117], 

polycations [118], various bacterial agents, distilled water, papain, histamine, 

mucopolysaccharides, physiologic saline, carbolic acid, hydrochloric acid, tincture of 

iodine, xylene, turpentine, formaldehyde, and formalin [119]. Intradermal 

Mycobacterium butyricum induces a polyarthritis in rats that also serves as a model 

of chronic pain (see section on models of chronic pain) [120].

Serial intra-articular injections of carrageenan have been used to induce 

articular damage in dogs [51,121-123] and rabbits [49,108]. In contrast to the other 

species, the specific-pathogen free pig did not experience articular cartilage damage 

after three separate weekly injections of carrageenan [53]. The reason for this 

difference is not clear, although only two pigs were given repeated injections. 

Arthritis has been induced in horses by surgical means [124], injection of bacteria
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[125], amphotericin [126], serial injections of the polyene antibiotic filipin [112,127], 

repeated injections of sodium monoiodoacetate [128] and combinations of the above 

[129].

PGEj [130-134] and LTB4 [133,135-138] have been identified in synovial fluid 

from human patients with various forms of arthritis. Monocytes from patients with 

rheumatoid arthritis have been shown to produce large amounts of LTB4 [139]. 

Further, plasma PGE2 [140] and serum LTB4 [141] levels of patients with rheumatoid 

arthritis are reportedly higher than normal controls and the time course of changes of 

PGE2 in blood plasma levels reflects the disease dynamics [140]. In vitro research on 

cells from humans with rheumatoid arthritis indicates that activated synovial lining 

cells produce PGEj whereas LTB4 originates mainly from synovial fluid neutrophils 

[142], Studies in other inflammatory exudates have also shown that the primary 

arachidonic acid products of neutrophils are leukotrienes [7]. PGE2 has been 

quantitated by radioimmunoassay (RIA) in synovial fluid of normal horses (26.5 pg/ml 

+ /- 3.33) and those with various forms of clinical arthropathy (144.9 pg/ml +/- 

22.19). In the arthritic horses, PGEj concentrations were reduced after treatment with 

corticosteroids and antibiotics [143].

Eicosanoids have also been quantified in synovial fluid during experimental 

arthritis. Synovial fluid from dogs with carrageenan-induced arthritis contained PGE^ 

(peak 9.5 ng/joint) and LTB4 (peak 279.2 pg/joint) as measured by reversed phase 

high performance liquid chromatography (RP-HPLC) [51]. Additional data is 

presented in Tables 3 and 4.
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Table 3: Mean peak synovial fluid PGE2 concentrations from various species.

METHOD/
SPECIES

TIME OF PEAK 
CONCENTRATION

PEAK
CONCENTRATION

(ng/ml)

ANALYTICAL
METHOD

REF.

Polycation-induced 
arthritis in rabbits

2 days 12.5 RIA [118]

Clinical
arthritis/horse

N/A 0.144 RIA [143]

Rheumatoid
arthritis/human

N/A 0.119 RIA [134]

N/A = Data not available



www.manaraa.com

Table 4: Mean peak synovial fluid LTB4 concentrations from various species.

METHOD/ TIME OF PEAK PEAK ANALYTICAL REF.
SPECIES CONCENTRATION CONCENTRATION METHOD

(ng/ml)

Carrageenan 
arthritis/dog (10 
weekly irsj.)

10 weeks 3.14 RP-HPLC [123]

Rheumatoid
arthritis/human

N/A 0.34 RP-HPLC [135]

Osteoarthritis/
human

N/A 0.81 Bioassay [136]

N/A = Data not available
RP-HPLC = Reversed phase high performance liquid chromatography
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C. Pain

Pain is defined by the International Association for the Study of Pain as "an 

unpleasant sensory and emotional experience associated with actual or potential tissue 

damage" [144]. Pain in animals has been described as an aversive sensory and 

emotional experience which elicits protective motor actions, results in learned 

avoidance and may modify species-specific traits of behavior, including social 

behavior [145]. Pain is an important homeostatic mechanism that serves to warn the 

organism away from the inciting cause or to inform it of a existing pathology. 

Nociception, the response to the application of a noxious stimulus, involves peripheral 

receptors and the transmission of the signal along neural pathways leading to the 

perception of pain [145]. Nociceptors are a group of undifferentiated terminals 

lacking a specialized receptor apparatus [146]. Nociceptive impulses are carried by 

small myelinated afferent A-delta fibers which are associated with sharp, stabbing, 

well localized pain, and unmyelinated C-fibers which are responsible for dull, 

burning, diffusely localized pain [147]. These C-fibers conduct pain very slowly and 

are responsible for second pain. They make up 70% of all afferents [41]. The C- 

fiber group also contains efferent fibers of the sympathetic nervous system which 

release substance P and in this capacity they may mediate chronic pain and neurogenic 

inflammation [147,148].

Two general types of central neurons are involved in nociception, nociceptive 

specific neurons that respond only to painful stimuli and polymodal neurons that 

respond to noxious and non-noxious stimuli. These neurons lie in the dorsal horn of



www.manaraa.com

34

the spinal cord and have input from A-Delta, C-fibers and in the case of polymodal 

neurons, low threshold mechanosensitive Afl-fibers [147]. Impulses are carried from 

these neurons to central terminals in the thalamus via axons in the spinothalamic and 

spinocervicothalamic tracts [149]. The thalamus is connected to the cerebral cortex 

by both ascending and descending projections which are responsible for recognition 

and modification of nociceptive input [150].

1. Acute pain

Nocifensive reflexes from acute pain are manifested by the peripheral nervous 

system in flexion and withdrawal responses and changes in the autonomic nervous 

system such as vasospasm and inhibition of the gastrointestinal and genitourinary 

tracts. These autonomic responses usually result in an increase in ventilation and 

hypothalamic activity with an increase in cardiovascular and endocrine function [151]. 

The autonomic changes in response to painful stimuli also include increased plasma 

concentrations of epinephrine and norepinephrine [152]. Cortical responses are more 

complex and result in avoidance behavior.

In animals and man the threshold at which peripheral nociceptors start to 

discharge does not always coincide with the pain reaction threshold. The pain 

reaction threshold is usually higher than the nociceptive threshold of the peripheral 

neuron as central control centers affect the pain reaction threshold. Care must be 

taken to distinguish between pain reaction and simple spinal reflexes. In animals with 

complete spinal transection, pain reaction is absent but the animal may have 

exaggerated spinal reflexes. Pain reaction in animals may also be manifested by
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turning the head towards the stimulus, respiratory changes, pupillary dilation, 

aggression towards the stimulus and vocalization [145]. The assessment of pain in 

animals is difficult without knowledge of the previous condition and behavior of the 

animal. Animals may also manifest acute pain by alterations in normal behavior 

including: restlessness, guarding, vocalization, self-mutilation, reluctance to move or 

recumbency, abnormal posture, altered feeding or sleep cycles and aggression or 

agitation [153].

2. Chronic pain

Chronic pain in humans is the most frequent cause of suffering and disability 

that seriously impairs the quality of life [154,155]. Chronic pain is defined as that 

which persists a month beyond the usual course of an acute disease or reasonable time 

for an injury to heal, or pain that recurs at intervals for months or years [155]. 

Chronic pain is predominantly due to prolonged excitation of nociceptors such as 

occurs in arthritis, peripheral vascular disease and chronic musculoskeletal disorders 

[155]. This peripheral mechanism of chronic pain is associated with the release of 

various algogenic substances in the tissue such as bradykinin, serotonin, histamine, 

substance P and the prostaglandins. Central mechanisms are involved in chronic pain 

syndromes associated with neuropathy [154]. In contrast to acute pain, the autonomic 

responses usually decrease progressively during the course of chronic pain and may 

disappear [151].

Behavioral changes in animals associated with chronic pain include: reluctance 

to move or recumbency, anorexia, grooming abnormalities, depressed attitude,
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constant licking, rubbing or scratching of an area and altered feeding or sleep cycles 

[153].

3. Mediators

Numerous algogenic substances are responsible for the various expressions of 

pain seen in acute and chronic conditions such as: allodynia-pain resulting from a non- 

noxious stimulus to normal skin; hyperalgesia-excessive sensitivity of polymodal 

nociceptors; and hyperpathia-abnormally exaggerated subjective response to painful 

stimuli [155]. Hydrogen ions, serotonin, histamine, bradykinin and prostaglandins 

have excitatory effects on nociceptors as application of these substances to skin blisters 

in humans results in pain. These compounds have dramatic effects on 

microcirculation as discussed in the inflammation section. These effects may further 

add to the excitability of nociceptors [147].

Prostaglandins and leukotrienes are considered mediators of hyperalgesia rather 

than pain. When administered alone they do not produce substantial pain except when 

administered in high doses [156]. Prostaglandins facilitate pain evoked by physical 

stimuli [157] and potentiate pain induced by histamine and bradykinin [147,156]. 

PGEj does not directly alter the resting discharge of nociceptive afferents, but it 

produces a dose-dependent increase in the firing rate after stimulation [157]. PGE^ 

and PGI2 have been used to produce hyperalgesia to mechanical stimulation in the rat 

hind paw. In this model, PGI2 produces immediate hyperalgesia while PGEj produces 

more potent effects lasting for more than 6 hours [158]. PGE^ when injected intra- 

articularly in dogs produces incapacitation of the injected joint for more than four
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hours [158]. The hyperalgesic effect of prostaglandins in the inflamed rat paw can 

be completely blocked by the administration of indomethacin [98]. Prostaglandins are 

involved in the hyperalgesia that is produced by the local injection of bradykinin and 

in norepinephrine-potentiated hyperalgesia [98,159]. It is known that prostaglandins 

of the E series are released upon sympathetic nerve stimulation where they may 

represent a trans-synaptic feedback process [160,161]. Prostaglandins are also 

released from cholinergic synapses after stimulation of the phrenic nerve [162],

In addition to these peripheral algogenic effects, evidence exists for a central 

role in the facilitation of the pain message by prostaglandins. Prostaglandins are 

thought to be released centrally in response to nociceptive input. High intensity 

stimulation of peripheral nerves in the cat [163] and frog [164] result in the release 

of prostaglandins in the spinal cord. Intrathecal injections of PGEj produce 

hyperalgesia and block endogenous opioid-mediated analgesia. These effects are dose- 

dependent and are reduced by the intrathecal administration of NSAIDs [165]. These 

researchers concluded that prostaglandins inhibit the bulbospinal noradrenergic 

component of the endogenous pain control pathway by inhibiting the spinal release of 

norepinephrine. It is clear from the literature that although prostaglandins are not 

essential for nociception, when released peripherally they facilitate transmission of 

nociceptive impulses and within the central nervous system they inhibit tonic 

modulatory systems [163].

LTB4 produces hyperalgesia in the rat paw that is independent of 

cyclooxygenase and bradykinin activity [166]. LTB4 was approximately three times
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more potent on a molar basis than bradykinin in this model. This effect was shown 

to be dependent on neutrophils as the depletion of these cells prevented the 

hyperalgesic action of LTB4 [166] Similar concentrations of PGE2 produced 

hyperalgesia, but this effect was independent of neutrophils [166] and was not 

synergistic with LTB4 [32]. Further studies have shown that neutrophils in response 

to chemotactic factors such as LTB4, Af-formyl-methionyl-leucyl-phenylalanine 

(fMLP), or C5a produce hyperalgesia by generating hyperalgesic 15-lipoxygenase 

products [167,168].

The nonapeptide bradykinin is one of the most potent pain-producing 

substances. Bradykinin produces pain in man when applied intradermally, 

intraarterially or intraperitoneally. However, intramuscular administration of 

bradykinin did not produce pain in man whereas hypertonic saline and histamine did 

[169]. Other researchers have reported that bradykinin excites small afferent fibers 

of cutaneous and muscular origin. [170]. The hyperalgesia induced by bradykinin is 

dependent on norepinephrine as the effect is not seen after the intradermal injection 

of bradykinin in sympathectomized rats [98], Bradykinin also facilitates the release 

of the prostaglandins through phospholipase A2[159]. Administration of NSADDs 

attenuates the hyperalgesic effect of bradykinin in the rat paw [166].

Substance P from sensory nerve fibers participates in neurogenic inflammation. 

Orthodromic or antidromic excitation of substance P containing neurons results in 

release of the mediator. This results in an increase in capillary permeability,
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vasodilation and edema [36,147]. However, this peptide when administered locally 

is not directly algogenic and does not excite nociceptors [157].

Norepinephrine is thought to mediate pain in damaged tissue (hyperalgesia) but 

not in normal tissue. In rats made hyperalgesic by the application of irritants to the 

hindpaw, the injection of norepinephrine significantly reduced the nociceptive 

threshold, presumably through prostaglandin release [98].

4. Models of acute pain

There are several methods described in the literature for the production of 

stimuli and quantification of responses in various models of pain. These 

methodological differences make it difficult to compare nociceptive thresholds from 

differing pain modalities [150]. It is known that the potency of analgesics differ 

depending on the model and type of stimuli employed [171]. Furthermore, different 

analgesic systems may be activated by noxious stimulation of different body regions 

[172]. Therefore, caution should be used when attempting to compare data from 

different pain models and regions of the body.

The ideal nociception model should distinguish between responses to noxious 

and non-noxious stimuli. The nociceptive stimulus should be quantifiable, repeatable 

and precise in order to minimize variability. Nociceptive responses associated with 

the stimulus should be reduced dose dependently by analgesics. Further, there should 

be no lasting tissue damage [144,173]. As repeated presentation of the painful 

stimulus often results in response modification such as conditioning, the stimulus 

should be applied in a limited fashion [144], Since animals are not able to verbally
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express pain, measurable nociceptive responses often include autonomic changes in 

blood pressure, heart rate, respiratory rate, etc. and somatomotor responses such as 

the tail flick, writhing, vocalization and limb withdrawal.

Acute pain models can be classified according to the type of stimulus into 

chemical, electrical, mechanical and thermal methods. Various chemicals have been 

used to excite peripheral nociceptors. Formalin when injected into the footpad of a 

rat and cat causes measurable pain responses such as paw licking lasting for 

approximately one hour [155,173]. Chemicals such as acetic acid, acetylcholine, 

alloxan, bradykinin, hydrochloric acid, hypertonic saline, lipoxidase, MgS04, 

oxytocin, phenylquinone, serotonin, epinephrine, tryptamine and ATP have been 

injected into the peritoneal cavity of mice and rats to produce a writhing response. 

Analgesic efficacies are determined by measuring the latency to the fust writhe and 

the frequency of writhing [144,174]. ATP and acetylcholine are considered inducers 

of inflammatory-type pain whereas MgS04 produces a non-inflammatory pain [175]. 

Lactic acid has been injected into the paravertebral muscles of horses as a model of 

acute myositis. Pain responses such as flinching and kicking were graded after digital 

pressure on the injected area [176].

Electrical stimulation of the rat tail produces three types of pain responses 

according to the intensity of the stimulus. Low intensity stimulation produces a tail 

withdrawal. Moderate stimulation produces a brief vocalization and higher voltages 

produce vocalization after termination of stimulus [144,174]. Electrical stimulation 

of the tooth pulp has been used in rats [144] and horses [177]. The tooth pulp is
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thought to be innervated exclusively by A delta and C-fibers which are nociceptive 

fibers. However, non-nocifensive AB-fibers are also stimulated in this model [178]. 

The animal responds by lifting the head or by the jaw-opening reflex.

Selective stimulation of the mechanoceptors is accomplished by applying high 

pressure. These techniques stimulate low pressure mechanoceptors in addition to the 

high pressure receptors. Some techniques use hair or nylon strings of different 

diameters and lengths (Von Frey’s hairs) as stimuli [144]. Artery clips have been 

applied to the tails, ears, paws, and toes of rodents and the resulting biting behavior 

quantitated. Similarly, the compression of the tail or toe of the animal results in 

flexor reflexes or vocalization. These methods lack precision in the amount of 

mechanical pressure applied [174]. A more precise model of mechanical pain has 

been produced in sheep using a device that presses a blunt pin at a set pressure against 

the dorsum of the radius [179]. A similar model has been developed for the horse 

[180]. The rat paw yeast test of Randall and Selitto is used to induce hyperalgesia and 

test NSAIDs [181]. The drug is administered one hour after yeast challenge and 

pressure is applied to the inflamed paw until the animal struggles or vocalizes [174],

The classic thermal model is the tail-flick method in rats and mice. This 

model is used as a standard screening procedure for analgesics and is highly correlated 

with their effectiveness in relieving pain in humans. A radiant heat stimulus is applied 

to the blackened area of the tail and the latency to tail flick is measured [173]. A 

similar test involves placing the rodent’s tail in water kept at 45 to 65' C [144]. 

Another model of thermal pain in the rodent involves placing the animal in a closed
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container with heat applied to the floor. The responses noted include agitation, rapid 

withdrawal of the paw, licking of the paws and jumping [144]. Thermal thresholds 

have been measured in sheep using a heated device applied to the pinna. The sheep 

responds by flicking the ear or shaking the head [179]. In the horse, thermal 

stimulation of the withers and lateral fetlock has been used to evaluate pain thresholds. 

The horse responds by twitching the skin over the withers or by lifting the forefoot 

after stimulation of each region [182,183]. Thermal devices have been implanted over 

the radial periosteum of ponies in an attempt to model deep pain. The response to 

this stimulus was noted as slow and unreliable [184-186].

Reflex behaviors such as the tail-flick, toe pinch and the jaw-opening reflex 

are not measures of pain reaction, but are nociceptive reflexes. Some of these simple 

reflexes are considered spinal reflexes as they may be elicited in animals with spinal 

transection [173].

5. Models of chronic pain

Chronic pain in humans and animals is frequently encountered in a clinical 

setting and is often extremely difficult to alleviate. Most of the experiments in pain 

research utilize acute rather than chronic paradigms. However, chronic pain in not 

simply a prolongation of acute pain. There are distinct central changes associated 

with chronic pain [41]. Therefore, knowledge gained from these acute pain models 

is often not applicable to the alleviation of the chronic pain state. A few chronic pain 

models have been developed in animals. The paucity of models of chronic pain in 

animals is in part due to the important ethical considerations in using animals that may
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suffer needlessly. Some of models of chronic pain have been described previously 

under models of acute inflammation. Most models of arthritis produce lasting tissue 

damage resulting in a perpetuation of inflammation into the chronic state. They may 

then be used for the study of chronic pain [173]. In addition several models of 

neuropathic pain have been developed by severing peripheral nerves [187].

a. Adjuvant models

Freund’s adjuvant models of cutaneous inflammation and polyarthritis involve 

the inoculation of a paraffin oil suspension of heat-killed Mycobacterium butyricum 

into the footpad or dermal tissue at the base of the tail of rats. The cutaneous model 

results in inflammation within 4 hours and peaks within 1 to 2 days. The affected 

limb is hyperalgesic and edematous for 1 week to 10 days [173]. In the adjuvant- 

induced arthritis model, animals experience a temporary polyarthritis with an 

increased severity in the hindlimbs. Inflammation of the base of the tail, periorbital 

region, snout, ears and penis occur as well. Behaviorally, the animals exhibit an 

increased stress reaction, show frequent scratching activity and are more aggressive. 

Weight loss and a decrease in spontaneous locomotion are also evident. This 

condition is fully developed 22 to 28 days post-induction and is usually associated with 

a slow recovery to normal by the 55th day. Pain is inferred from the increased 

scratching behavior in these animals as it is alleviated by morphine and other 

analgesics [120]. Other authors have used this model to evaluate nociception by 

applying pressure to the inflamed hind paw and determining the vocalization threshold
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[188] and to demonstrate self-administration of NSAIDs and narcotic analgesics 

[189,190].

Several investigators have demonstrated that joints from adjuvant-induced rats 

are hyperalgesic in that there is a lower threshold to mechanical stimuli and the areas 

known to be involved in nociception from the peripheral receptor to the cortex are 

markedly altered. A-delta and C-nociceptor afferents, which are normally sensitive 

only to noxious stimuli, were stimulated by non-noxious mechanical means in this 

model of rat arthritis [191]. The mechanosensitivity of the myelinated and 

unmyelinated units of the medial articular nerve of the knee was also increased in this 

model [192]. Similar results were found in sheep with chronic pain from foot rot. 

These sheep had lowered mechanical thresholds in the affected limb. It is likely that 

these effects are brought about by peripheral changes as the local injection of lidocaine 

returned the thresholds to control values [179].

Central neuronal changes have been demonstrated in animals with chronic pain. 

In decerebrate rats with adjuvant-induced arthritis there was an increased activity of 

dorsal horn cells and a high degree of responsivity to light mechanical stimuli. The 

superficial dorsal horn cells driven from inflamed areas converted from responding 

only to noxious stimulation to responding to mild mechanical stimuli [193]. Dorsal 

horn neurons in decerebrate rats showed an increase in cutaneous receptive field after 

repeated excitation of C-fiber afferents. These neurons also began responding to low 

threshold stimuli such as brush and touch [194], Recordings from the ventrobasal 

complex of the thalamus in arthritic rats indicate that there is an increased proportion
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of the neurons responding to the light pressure or flexion and extension of the diseased 

joints as compared to normal animals [195]. These responses were reduced by 50% 

after the injection of the NSAID, diclofenac, indicating possible prostaglandin 

involvement [196]. The analgesic effect of diclofenac was more potent in arthritic rats 

as compared to normal animals.

The somatosensory cortex also is altered during states of chronic pain. Central 

somatosensory neurons of animals with chronic inflammatory pain show a marked 

increased sensitivity to moderate mechanical stimulation of inflamed tissues and 

surrounding areas as compared to normal animals [197].

b. Laminitis

Laminitis is one of the major causes of chronic hoof pain in the horse [198]. 

Horses afflicted with the acute form of this disease experience extreme pain and are 

often euthanized. The chronic form is associated with debilitation, decreased fertility, 

lameness and pain which may last for the life of the animal. Equine laminitis has 

multiple etiologies and the pathophysiology is complex and incompletely understood 

[199]. This disease is not simply defined as inflammation of the laminae of the foot 

as was once described, but is peripheral vascular disease with ischemic necrosis of the 

laminae associated with hoof pain [200]. The pathology within the foot is a 

manifestation of a systemic metabolic disorder that affects the cardiovascular, 

endocrine and renal systems.
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/. Hoof anatomy

The distal phalanx or coffin bone is covered by intermeshing dermal and 

epidermal laminae which support the bone within the hoof capsule. The insensitive 

laminae are composed of the epidermis except for the stratum germinativum which 

with the dermis makes up the sensitive laminae [200]. The circulation of the hoof is 

complex and unique owing to its role in thermoregulation and nutrition to the 

proliferating epidermis. The laminar microvasculature arises from distal branches of 

the digital arteries so that laminar blood flow is in a distal to proximal direction with 

the dorsal laminae being the last to receive blood [201]. Numerous arteriovenous 

anastomosis are found within the foot which open to decrease vascular resistance and 

increase the blood flow to the limbs in order to cool the body [202]. The veins of 

the hoof and lower limbs are thick muscular structures and there are no venous valves 

in the foot [203].

Sensory receptors in the equine foot include lamellated corpuscles in the dermis 

of the heel similar to Pacinian corpuscles and free nerve endings containing calcitonin 

gene related peptide-like immunoreactivity in the solar dermis and epidermis [204]. 

The myelinated corpuscles in the heel are likely to be involved in relaying 

proprioceptive information during locomotion. In contrast, the free nerve endings 

in the solar dermis are thought to be involved in nociception and regulation of blood 

flow [204].
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ii. Etiology

Numerous etiologies have been identified that produce laminitis: ingestion of 

toxic quantities of wheat, com and barley grains resulting in carbohydrate overload; 

ingestion of large quantities of water; ingestion of high quality, rapidly growing, 

succulent grasses or legumes by obese animals; excessive weight bearing or 

application of severe concussive forces to the foot; severe bacterial infection or viral 

respiratory disease; exposure to black walnut shavings; ingestion of beet tops [200]; 

and high doses of corticosteroids [205,206]. Experimental laminitis has been 

produced by the administration by aqueous extract of black walnut (JugIans nigra) 

[207,208] and more commonly by the oral administration of large amounts of 

carbohydrates [209].

iii. Pathophysiology

It has been hypothesized that a laminar ischemia develops acutely due to 

decreased capillary perfusion from opening of arteriovenous shunts. This results in 

a lowering of vascular resistance and an increase in total hoof blood flow as may be 

noted clinically by an increase in hoof temperature and a bounding digital pulse that 

persists through the chronic phase of the disease. Several groups have measured an 

increase in total digital blood flow [210] and have demonstrated regions of 

hypoperfusion within the dorsal laminae [208,211,212], Other workers have not 

supported the hypothesis that lamellar ischemia is the primary cause of acute laminitis 

[213], while others have noted a decrease in total digital blood flow [208]. These 

discrepancies are due primarily to the techniques used to determine blood flow and
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these results should be interpreted with caution [214]. Allen et al., concluded that 

profound increases in postcapillary resistance, and capillary pressures predispose the 

foot to interstitial fluid volume accumulation and increased tissue pressure in the 

prodromal stages of laminitis [215]. The increased tissue pressure in this noncompliant 

compartment results in hoof pain [214] which accounts for the increased plasma 

catecholamine concentration seen in horses developing laminitis [199,216]. These 

catecholamines further exacerbate ischemia through vasoconstriction of digital vessels 

[217]. Systemic hypertension occurs in the developing phase, but it is secondary to 

hoof pain and is also mediated through the sympathetic nervous system [199]. This 

hypertension is thought to be a positive feedback mechanism from the digital 

vasoconstriction and is often present in the chronic forms of the disease [218].

Evidence for disseminated intravascular coagulopathy exists in horses 

developing laminitis as platelet numbers drop before the development of lameness 

along with the development of other coagulation abnormalities [199]. Other workers 

have not detected significant changes in platelet number or function in horses with 

experimental laminitis [219].

Bacterial endotoxin has been incriminated as a mediator or inciting cause in 

laminitis as many horses with endotoxemia develop laminitis [220] and horses with 

carbohydrate overload laminitis have a increase in plasma endotoxin that is associated 

with lameness [221]. Endotoxemia is associated with increase plasma levels of LTB4 

[222], PGEj, TXBj and PGF2„ and the administration of NSAIDs prevents many of 

the effects of experimentally induced endotoxin [223]. The association between
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endotoxin-induced eicosanoid production and the development of laminitis is theorized 

but has yet to be proven due to the inability to produce laminitis with experimentally- 

induced endotoxemia. Further the role of eicosanoids in equine laminitis has not been 

evaluated [220].

Early histological changes in the foot include endothelial cell swelling and 

edema, laminar distortion, epithelial hyperplasia, microvascular thrombosis, 

congestion and hemorrhage [220,224-226]. There is no evidence of inflammatory cell 

influx, but edema and vacuolation of the dermal tissue with necrosis and atrophy of 

the epidermal laminae occurs [220,224]. In severe cases of laminitis, degeneration 

of the laminar interdigitation occurs causing the distal phalanx to separate from this 

supporting structure and rotate within the hoof capsule [201]. Ventral deviation or 

distal displacement of the distal phalanx is due to the biomechanical forces exerted on 

the foot including the downward load of the weight of the horse exerted on the bony 

column and the proximal pull of the deep digital flexor from its insertion on the 

ventral surface of the distal phalanx [220]. The tearing force exerted against the toe 

during midstride also acts to separate the distal phalanx from the hoof wall [227]. 

The rotation forces on the distal phalanx may cause penetration of the bone through 

the sole just dorsal to the apex of the frog. The degree of rotation as determined 

radiographically can be used as a prognostic indicator [228]. In extremely acute 

cases, the laminae surrounding the distal phalanx die resulting in a total separation 

from the bone [229]. In these obviously terminal cases no rotation occurs as the bony 

column sinks in the hoof capsule.
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Chronic laminitis is classified by greater than 48 hours of continual pain from 

a laminitic episode or when rotation of the distal phalanx occurs [200]. Angiographic 

studies in horses with chronic laminitis have shown irregular digital vascular patterns 

with areas of avascularity in the cerium [230]. Hyperplasia of the dermal and 

keratinizing epidermal laminae [224] occurs dorsally in the hoof wall which creates 

a wedge of tissue that forces the epidermal and dermal laminae apart. This is 

evidenced on the sole as ’seedy toe’ or an abnormally large white line. This wedge 

is thought to perpetuate the rotation of the distal phalanx [200]. Diverging hoof 

growth rings that are wider at the heels are often present giving the hoof a concave 

dorsal surface. Due to the ischemic necrosis within the laminae and large white line, 

these horses have an increased tendency for abscessation and cracks which may also 

cause hoof pain and lameness [231]. The gait of these horses is characteristic as the 

foot strikes the ground in a heel-toe fashion. The solar surface of the foot is 

particularly sensitive to the pressure of the hoof tester over the sole, midway between 

the apex of the frog and the toe [231]. Horses with severe chronic laminitis often 

have difficulty remaining in the standing position for any substantial length of time 

due to the pain associated with weight bearing. If pain is severe, prolonged periods 

of recumbency may occur which lead to the formation of decubital ulcers, reduced 

body condition and impaired ventilation. Furthermore, since weight bearing by the 

foot is essential for normal circulation, prolonged recumbency may lead to thrombus 

formation within the digital vascular system further exacerbating laminitis [231,232].
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Analgesics temporarily reduce the pain and suffering associated with laminitis 

and allow the animal to more comfortably stand and ambulate, thereby promoting 

blood flow to the foot and reducing the adverse effects of long term recumbency. In 

addition, some analgesics lower plasma catecholamine concentrations that are 

associated with nociception and stress [152]. When released, these endogenous 

amines are thought to produce vasoconstriction of the digital vasculature, resulting in 

ischemia which further exacerbates laminitis [200]. According to Hood, horses that 

are treated early with systemic analgesics have a lower incidence of rotation than those 

treated late in the course of the disease [199]. Phenylbutazone (4.4 mg/kg) is 

regarded as the single most important therapeutic agent in treating laminitis [231,233]. 

NSAIDs are thought to be particularly useful in treating the coagulopathy because of 

their inhibitory effects on eicosanoid formation and platelet function [199,234], PGF^ 

and thromboxane are known to be potent constrictors of digital arteries and veins with 

the veins being more responsive than the arteries [217], Although it is known as a 

vasodilator, PGEj was less potent in producing digital artery dilation as compared to 

acetylcholine, acepromazine, isoxsuprine and prostacyclin [235]. During experimental 

laminitis, the administration of phenylbutazone returned hypertensive horses to 

normotension. These authors found that most horses (85%) recovered from the 

laminitic episode without rotation following the administration of phenylbutazone 

while housed in soft sand stalls [199].
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D. Nonsteroidal anti-inflammatory agents

1. Mechanism of action

a. Cyclooxygenase inhibition 

The medicinal effect of the bark of the willow tree has been known for 

centuries. The active ingredient in the bark is salicin, a bitter glycoside. It was first 

used for the treatment of rheumatic fever and gout which led to the development of 

the first NSAID, aspirin or acetylsalicylic acid, that was then commercially prepared 

and marketed by Bayer. The NSAIDs are a chemically diverse group of compounds, 

although most are weak organic acids (pKa 3.0 to 5.5 for carboxylic or enolic acids, 

pKa 9-10 for phenolic acids) [236]. These drugs share common features in that most 

are antipyretic, anti-inflammatory and analgesic.

In 1971 Vane [237] demonstrated that aspirin and indomethacin inhibited 

prostaglandin formation in guinea pig lung in a dose dependent manner. In that same 

year, Smith and Willis [238] demonstrated that the administration of two tablets of 

aspirin to human volunteers resulted in deficient prostaglandin production in platelets 

one hour later. These experiments supported the increasing evidence that 

prostaglandins participated in the pathogenesis of fever and inflammation. Further 

work showed there to be an overall positive correlation between the concentrations of 

NSAIDs that block prostaglandin synthesis in vitro and doses in which they exert 

analgesic, anti-inflammatory, and antipyretic activities in animals [239,240]. Inhibition 

of platelet function and prolongation of bleeding times with some NSAIDs have also 

been shown to be a result of cyclooxygenase inhibition [238].
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Aspirin acetylates and irreversibly inactivates the cyclooxygenase in platelets 

[241] and in human synovial microsomes [242] through covalent bonding. Other 

NSAIDs such as indomethacin, meclofenamic acid and flurbiprofen inhibit 

cyclooxygenase reversibly at first and then essentially irreversibly by non-covalent 

binding in a stereospecific and time-dependent manner to subunits of the prostaglandin 

endoperoxide synthase enzyme [243]. This time-dependent effect appears to depend 

on the presence of a halogen and a carboxyl group [244]. Other drugs such as 

ibuprofen and mefenamic acid are not able to inactivate the enzyme and are 

considered reversible inhibitors [244] Some of these drugs such as phenylbutazone 

inhibit the enzyme more efficiently when the concentration of lipid hydroperoxides is 

reduced [245].

There is good correlation between the rank order of potencies in reducing 

edema and prostaglandin concentrations in vivo, although the doses required to prevent 

edema are usually much higher (Table 5) [64], Inhibition of lysosomal release by 

NSAIDs has been documented for several compounds but the rank order of potency 

of these drugs does not correlate with their anti-inflammatory activity [8].

b. Leukocyte migration

NSAIDs have been shown to inhibit leukocyte migration in carrageenan- 

induced inflammation in the rat [50,246]. However, the doses producing this effect 

are generally much higher than those which prevent erythema and hyperalgesia [8]. 

However, therapeutic doses of indomethacin, piroxicam and ibuprofen reduce the 

function of neutrophils in human subjects [247]. Further, doses approximating the
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Table 5: Rank order of potency of NSAIDs in inhibiting carrageenan-induced edema and 
prostaglandin synthesis (as determined by bioassay) in vivo in the rat. Adapted from Higgs et al., 
1976 and 1983 [8,64].

DRUG RELATIVE POTENCY 
EDEMA INHIBITION

RELATIVE POTENCY 
PG SYNTHESIS 

INHIBITION

Aspirin 0.10 0.02

Phenylbutazone 0.73 0.39

Ibuprofen 0.85 0.20

Naproxen 1.00 1.00

Indomethacin 5.54 7.30

Ketoprofen 8.50 64.70
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therapeutic ranges of flunixin and phenylbutazone decreased the LTB4-induced 

chemotaxis of canine neutrophils ex vivo [248]. The inhibitory effects of NSAIDs on 

neutrophils are not thought to be mediated by cyclooxygenase inhibition but by 

uncoupling protein interactions within the plasmalemma [247]. In contrast, low doses 

of phenylbutazone (0.05 mg/kg), indomethacin [50], aspirin and flurbiprofen [15] 

stimulate leukocyte counts in the rat carrageenan model. This modulation of leukocyte 

migration was not correlated with cyclooxygenase inhibition. There may be some 

potentiation of lipoxygenase at low doses of some NSAIDs which could account for 

the increased number of leukocytes. Or perhaps NSAIDS modify leukocyte migration 

by another mechanism. NSAIDs have been shown to inhibit several enzyme systems 

independently of cyclooxygenase such as: superoxide anion generation by a NADPH 

oxidase system in neutrophils; mononuclear cell phospholipase C activity; and the 

conversion of 12-HETE from 12-HPETE in platelets [247]. Further, many of these 

drugs uncouple oxidative phosphorylation; alter the uptake and membrane 

incorporation of arachidonate; and inhibit anion transport in the human erythrocyte, 

rabbit choroid plexus and renal tubular epithelium [247].

c. Lipoxygenase inhibition 

At therapeutic doses most NSAIDs do not inhibit the formation of leukotrienes. 

However, the pyrazolone derivative phenidone [249], the propionic acid derivative 

benoxaprofen [250], hydroxamic acids [251] and the phenylpyrazoline analogues of 

phenidone, BW755C and BW540C [252] have been shown to be both cyclooxygenase
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and lipoxygenase inhibitors. These analogues are effective in reducing inflammation 

in the horse but are not available clinically [253].

It has been shown that several NSAIDs may actually potentiate in vitro 

lipoxygenase product formation through shunting of the arachidonic acid substrate into 

the leukotriene pathway following cyclooxygenase inhibition [250,254], 

Cyclooxygenase blockade during acute anaphylaxis in guinea pigs augments the 

production of the slow-reacting substances of anaphylaxis and LTB4 [255]. In 

contrast, some prostaglandins inhibit the formation of lipoxygenase products from 

activated neutrophils [21].

d. Distribution into inflamed tissues 

NSAIDs bind extensively to albumin (90 to 99%) and may achieve high 

concentrations in an inflammatory site due to the increase in vascular permeability and 

exudation of plasma proteins including albumin. The clinical anti-inflammatory effect 

of NSAIDs in human arthritics correlates directly with the degree of plasma protein 

binding [256]. NSAIDs bound to albumin are thought to be released by the 

degradation of albumin by lysosomal enzymes at the site of inflammation [257]. This 

one way flow of albumin serves to increase the tissue concentration of the drug [258]. 

Also the lowered pH of the inflamed environment serves to keep these planar, anionic 

molecules unionized and thus increasing membrane permeability [247]. Ion trapping 

is postulated to occur intracellularly as the environment inside the cell is relatively 

alkaline compared to the acidic inflamed tissue [259-261]. The effect may also occur 

in gastric and renal tubular epithelium cells which border acidic extracellular fluids
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[258,262]. The optimal pK8 for this effect is reported to be between 4 and 5 [263]. 

In autoradiographic studies in rats, acidic NSAIDs were found to reach high 

concentration in the stomach wall, liver, blood and bone marrow, kidney cortex and 

in inflamed tissue. The non-acidic NSAIDs were equally distributed throughout the 

body [264]. Further, acidic salicylates reached levels in inflamed chicken joints that 

were three times higher than in control joints. The inflamed joint levels approximated 

the corresponding plasma levels at 2 hours post-dose [265].

e. Pain relieving effects 

NSAIDs do not produce analgesia in normal tissues and in most cases they do 

not elevate simple pain thresholds in experimental models in which thermal, electrical 

or mechanical stimuli are applied to normal tissues. However, these drugs are 

particularly effective in situations where an inflammatory response is present and the 

area is hypersensitive to mechanical stimuli. In these situations, NSAIDs usually do 

not completely block the painful response, but only reverse the hyperalgesia [163]. 

In electrophysiologic experiments in rats made hyperalgesic by the induction of 

adjuvant arthritis, systemically administered aspirin reduced the afferent discharge 

from affected joints within 20 to 30 minutes after injection [197]. Similar results were 

obtained from the local application of aspirin and lysine acetylsalicylate [266]. These 

experiments further add to the evidence that prostaglandins are involved in the 

mediation of pain and inflammation.

Early studies in the dog spleen demonstrated that NSAIDs produce analgesia 

peripherally [267,268]. Local injection of small amounts of NSAIDs into
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inflammatory lesions confirmed this peripheral site of action [269]. However, 

prostaglandins are released from the spinal cord during noxious stimulation [270] and 

intrathecal administration of prostaglandins lower nociceptive thresholds [269,271]. 

The intrathecal administration of NSAIDs reduces nociception and the simultaneous 

intrathecal and peripheral administration of NSAIDs produce synergistic effects [269]. 

A central component of the analgesia seen with NSAIDs has been demonstrated since 

intraventricular administration of these drugs reduced the hyperalgesia caused by 

carrageenan in the rat hind paw [272] and in the adjuvant-induced arthritis rat model 

[273]. A thalamic site of action is also likely as the administration of NSAIDs are 

found to reduce the nociceptive impulses from stimulation of the sural nerve in 

arthritic rats [148]. There are three possible central sites of action that have been 

identified: the hypothalamus [274], the periaqueductal grey area and the thalamus 

[148]. The mode of action of these drugs has been attributed to prostaglandin 

inhibition in neural tissues. However, there may be other yet unknown mechanisms 

as several NSAIDs such as salicylic acid, paracetamol and phenazone possess potent 

analgesic and antipyretic properties but are less efficacious anti-inflammatory agents 

or prostaglandin inhibitors in some models [275]. In a review of the literature by 

McCormack and Brune in 1991, they were unable to find a correlation between 

antinociceptive activity and inhibition of prostaglandin synthesis for the antipyretic 

analgesics [258]. Further work with enantiomers of flurbiprofen have shown that the 

S-enantiomer, which is almost solely active in cyclooxygenase inhibition, is
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approximately equal in antinociceptive activity as the /?-enantiomer which has almost 

no cyclooxygenase inhibitory properties [276].

2. Ketoprofen

Ketoprofen [(±)-2(3-benzoylphenyl)propionic acid] was synthesized in France 

by Rhone-Poulenc chemists in 1967, three years after the prototype ibuprofen [277]. 

This drug is approved in humans for the treatment of rheumatoid arthritis, 

osteoarthritis, and mild-to-moderate pain [278]. Ketoprofen was approved for the 

alleviation of musculoskeletal pain and inflammation in the horse in 1990. Few studies 

have been published on the anti-inflammatory and analgesic effects in the horse. 

Kinetic and metabolism studies in the horse are just now being published.

a. Pharmacokinetics

The kinetics of ketoprofen in man are well established. The terminal half-life 

is 1.8 hours after an intravenous dose. The volumes of distribution in man are low, 

approximately 4 L for the volume of the central compartment and 10 L for the steady 

state volume [278]. The drug like most NSAIDs is highly bound (>  90%), 

presumably to albumin primarily [279]. In human patients with various forms of 

arthritis, the area under the curve (AUC) for total (unbound and bound ketoprofen) 

was greater in serum than synovial fluid. However, the free fraction (unbound drug) 

AUC was similar for both. Further, the mean residence time in the joint was about 

three times that in serum which helps to explain the discrepancy of a longer duration 

of therapeutic effect than serum half-life [280]. The drug is conjugated and excreted 

primarily as an inactive metabolite in the urine. Further, a small percentage of the
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drug is excreted in the urine as an hydroxylated metabolite [278], Ketoprofen has 

been shown to have extensive tissue penetration into human tonsils [281] and crosses 

the blood-brain barrier quite rapidly [282]. This is due to the high lipid solubility of 

ketoprofen which has a heptane/water partition coefficient of 3.5 at pH 7 [282].

Sams et al. have reported plasma kinetics of ketoprofen in the horse [283]. 

This group determined that the half life is short in the horse (90 minutes). Protein 

binding was extensive with 92.8% bound at 0.5 ng//xl and 91.6% at 10 /ttg/ml. Renal 

elimination of unchanged ketoprofen and a base-labile conjugate accounted for 22.4% 

of total clearance and was due to both tubular secretion and filtration. Little tubular 

resorption occurred as horses have alkaline urine which serves to keep the drug 

ionized in the urine. In the Sams study, approximately 42.8% of the dose was not 

recovered from the urine. This was possibly due to the formation of a metabolite that 

was not recovered by the extraction method. The conjugate may be a glucuronide that 

has undergone intramolecular acyl migration rendering the compound resistant to /3- 

glucuronidase hydrolysis [283]

The 2-arylpropionic acids contain a chiral center and are usually administered 

as a racemate. In man, approximately 10% of the drug was found to invert from the 

R to the S enantiomer upon oral administration [284]. In the horse, the ratio of the 

S to R enantiomer increased over time and attained a ratio of 70:30 less than one hour 

after intravenous administration [285,286]. Cyclooxygenase inhibition is 

accomplished by the S-enantiomer primarily [287,288]. Metabolic chiral inversion of 

the R- to the S-enantiomer occurs after administration through the probable mediation
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of coenzyme A [289]. However, ketoprofen exhibits little stereoselectivity in its 

pharmacokinetics as the enantiomers have similar plasma time-courses and do not 

appear to interact with one another in man [284]. Some degree of stereoselective 

binding to albumin may occur but this binding does not appear to affect the disposition 

or kinetics of total (unbound and bound) enantiomer concentration in the therapeutic 

range in man [284].

b. Anti-inflammatory effects 

Ketoprofen has been shown to be a potent reversible inhibitor of prostaglandin 

synthase in several cyclooxygenase enzyme preparations at concentrations within the 

human therapeutic range [277,278,290,291] (Table 6). Values are expressed as the 

inhibitory concentration (IC^), which is defined as the concentration of inhibitor 

necessary for 50 percent inhibition of the enzyme reaction. In addition, ketoprofen 

is a potent inhibitor of inflammation in several models (Table 7). Values are 

expressed as effective dose (EDjq) which is defined as the dosage which gives a 

pharmacological effect equal to 50% of the maximum possible effect or which gives 

the expected pharmacological effect in 50% of the animals tested. As can be seen 

from the following tables ketoprofen demonstrates lower effective doses and inhibitory 

concentrations than many of the other commonly used NSAIDs.

There is equivocal evidence in the literature concerning the effect of ketoprofen 

on the lipoxygenase pathway as can be seen in Table 8. Ketoprofen has been shown 

to increase the SRS-A release in guinea pig lung but inhibited the release from human 

lung [250,292,293]. The production of 5-HETE and 5,12-diHETE, a diasteromer of



www.manaraa.com

Table 6: Inhibitory concentrations [IC50 (/iM)] of various NSAIDs on cyclooxygenase enzymes. 

METHOD KETO- PHENYL- IBU- INDO- BW755C REF.
PROFEN BUTAZONE PROFEN METHACIN

Sheep
seminal
vesicles*

6.92 4.89 5.82 6.40 N/A [291]

Mouse
peritoneal
macro
phage*

7.65 5.26 6.26 8.77 6.53 [291]

Rat
platelet

1.45 79.30 N/A 5.90 21.6 [290]

Rat
neutrophil

0.58 15.70 N/A 4.78 11.6 [290]

Rat renal 
medulla

2.20 20.90 N/A 5.07 12.1 [290]

N/A = Data not available 
*IC5o data expressed as -log mol/1
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Table 7: Effective doses [ED50 (mg/kg)] of various NSAIDs on inhibition of acute inflammation and pain.

METHOD KETOPROFEN PHENYLBUTAZONE IBUPROFEN INDOMETHACIN REF.

INFLAMMATION
MODELS:

Carrageenan rat 
hind paw edema

1.89 97.55 N/A 8.17 * [63]

Carrageenan rat 
hind paw edema

9.00 N/A N/A 9.00 [44]

Carrageenan 
abscess in rat

1.40 110.00 29.00 1.30 [44]

Inhibition of
leukocyte
migration

2.50 52.00 45.00 5.70 [15]

Contraction of rat 
colon

0.002 2.00 1.50 0.016 [296]

PAIN MODELS:

U.V. erythema in 
guinea pig

7.50 N/A N/A 10.20 [44]

Rat paw pressure 2.40 37.00 14.00 3.50 [44]
Writhing response 
in mouse

2.30 N/A N/A 2.20 [44]

N/A = Data not available
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Table 8: Inhibitory concentrations [ICso (/tM)] of various NSAIDs on lipoxygenase enzymes.

METHOD KETOPROFEN PHENYLBUTAZONE IBUPROFEN INDOMETHACIN BW755C REF.

Soybean 
15-LO

225.00 123 575.00 87.50 65.50 [294]

Soybean 
15-LO

No effect N/A N/A No effect 38.50 [290]

Rabbit
PMN5-LO

Approx.
11.81

N/A N/A Potentiated N/A [250]

Rat platelet 
12-LO

No effect No effect N/A 916.00 66.20 [290]

Rat PMN 
5-LO

No effect N/A N/A 332.00 55.70 [290]

N/A = Data not available

2
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LTB4, from rabbit neutrophils was inhibited by ketoprofen [250]. The lipoxygenase 

inhibition appeared to be dose-related in humans [292], but not in the rabbit model 

[293]. Ketoprofen and several other NSAIDs have been shown to inhibit soybean 

lipoxygenase [294] while other researchers report no effect in the enzyme system 

[290]. The concentrations required to inhibit lipoxygenase are generally higher than 

those that inhibit prostaglandin synthase activity. These studies underscore the 

variability that other researchers have noted in the drug’s effect on lipoxygenase 

activity. Such data varies depending on the source of the lipoxygenase enzyme and 

the species [293,295].

Ketoprofen reduced the PGE tissue concentration in carrageenan-induced hind 

paw inflammation in the rat [63]. Prostaglandin synthesis was also inhibited in the 

guinea pig lung preparation as determined by the perfusion of lung effluent over rat 

colon strips and measurement of the resultant contraction [296]. In human patients 

with rheumatoid arthritis, ketoprofen reduced the synovial fluid concentration of PGE, 

and PGF2(I three hours after intravenous administration of 100 mg of ketoprofen [297]. 

Ketoprofen (10 mg/kg per os) in the rat carrageenan pleurisy model decreased the 

total number of monocytes and slightly increased the number of neutrophils in the 

inflammatory exudate [298]. Ketoprofen (1, 3 or 9 mg/kg) when administered one 

hour before induction of carrageenan-induced pleurisy reduced the volume of exudate 

and leukocyte count in a dose-dependent manner. This effect was greater than that 

produced by the same doses of indomethacin [299]. Alleviation of inflammation has 

been demonstrated when ketoprofen was injected locally into carrageenan abscesses
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in the rat and intra-articularly in dogs with urate-induced arthritis [44]. Ketoprofen 

has demonstrated anti-bradykinin activity in the guinea pig that was 8 times more 

potent than indomethacin [44]. In vitro and in vivo evidence suggests that ketoprofen 

stabilizes lysosomes in the rat. Interestingly, this effect was more marked in rats with 

adjuvant induced arthritis than in normal animals [300].

c. Pain relieving effects 

Ketoprofen has demonstrated analgesic and anti-inflammatory effects in 

rheumatoid arthritis, osteoarthritis, ankylosing spondylitis and acute gout in humans 

[301]. Clinical trials with ketoprofen in humans have shown that it is therapeutically 

equivalent to aspirin, indomethacin and ibuprofen in rheumatoid arthritis and with 

aspirin in osteoarthritis [277]. Ketoprofen when evaluated in human dental pain 

models was more effective than ibuprofen and aspirin [302]. Compared to aspirin, 

ketoprofen was superior in controlling osteoarthritis [277] and postpartum pain [303]. 

This drug provided analgesia similar to that of morphine [303] and produced a longer 

duration of action than acetaminophen plus codeine [304] in clinical cases of post

operative pain. Ketoprofen is thought to have supraspinal analgesic properties [305]. 

Experiments with normal human volunteers and paraplegic patients that were 

stimulated by electrical impulses applied to the sural nerve have shown that 

intravenous ketoprofen has rapid inhibitory effects on spinal nociceptive reflexes in 

normal subjects while no significant effects were seen in the patients with chronic 

spinal section [306]. The injection of ketoprofen into the cerebral ventricles in rats 

with adjuvant-induced arthritis reduced the discharge of thalamic neurons after ankle
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mobilization. In addition, ketoprofen reduced the spontaneous firing rate in a dose- 

dependent manner [307]. These data provide good evidence for the direct central 

antinociceptive actions of NSAIDs.

d. Clinical studies

Ketoprofen has been evaluated in experimentally-induced endotoxemia in 

neonatal calves [308]. Ketoprofen inhibited the formation of the stable metabolites 

of TXA2 and prostacyclin, TXBa and 6-keto-PGFla, respectively, in plasma. 

However, it failed to significantly alter the degree of leukopenia and hypoglycemia 

associated with the endotoxemia in calves.

Ketoprofen was evaluated in a model of arthritis using Freund’s complete 

adjuvant injected into the carpal joint of horses. Horses became lame and experienced 

swelling, heat and joint pain 5 to 7 days after induction. Horses then received drugs 

once daily and were evaluated for 5 days for maximum joint flexion, stride length and 

lameness. Ketoprofen (2.2 mg/kg intravenously or intramuscularly) was 

therapeutically equivalent to flunixin meglumine (1.1 mg/kg) [309]. The same group 

of investigators evaluated ketoprofen in clinical cases of non-infectious 

musculoskeletal inflammation and the following were scored: lameness; pain on 

palpation or compression; pain on flexion, extension or rotation; swelling; heat; 

reaction after injection; and side effects. Cases included arthritis, laminitis, myositis, 

cellulitis, soft tissue inflammation and minor fractures. Statistical level of significance 

was set liberally at P < 0.10. There were no differences between ketoprofen and 

flunixin meglumine and there were no side effects noted [309].
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In clinical colic studies in horses, significant pain relief occurred at 15 minutes 

after intravenous ketoprofen administration (2.2 mg/kg) and continued for 60 minutes 

after drug administration [310]. This effect lasted up to four hours in some cases 

[311,312]. No difference was seen between ketoprofen (2.2 mg/kg) and flunixin 

meglumine (1.1 mg/kg) in any of the parameters measured [313]. In mares with 

experimentally-induced endotoxemia, ketoprofen (0.5 mg/kg) was equally as effective 

as flunixin meglumine (0.25 mg/kg) in suppressing the effects of the endotoxin. 

These investigators attempted to assay LTB4 in plasma during endotoxemia, but were 

not successful [314].

e. Adverse effects

The safety and toxicity of this drug in the horse has been compared to several 

of the currently used NSAIDs. Ketoprofen was administered intramuscularly in the 

neck and gluteal regions without any noted injection site reaction [315]. Therapeutic 

intravenous doses of ketoprofen (2.2 mg/kg), flunixin meglumine (1.1 mg/kg) and 

phenylbutazone (4.4 mg/kg) were administered every 8 hours for 12 days and 

compared in normal adult horses. Phenylbutazone caused: 1) a decrease in serum 

total protein and albumin concentrations; 2) edema of the small intestine; and 3) 

erosions and ulcers of the large colon. Some horses in the flunixin group and the 

phenylbutazone group developed renal crest necrosis. All NSAIDs including 

ketoprofen caused erosions of the glandular mucosa of the stomach. However, only 

flunixin and phenylbutazone treated horses developed ulcerations of the glandular 

mucosa [316]. Ketoprofen was evaluated in a subacute safety study after the
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intravenous administration of five times the therapeutic dose (11.0 mg/kg). No 

evidence of toxicity was reported in any horses after this 15 day regime. However, 

in drug tolerance studies using 25 times the therapeutic dose for 5 days, horses 

experienced depression, inappetence, icterus, nephritis, hepatitis, and hemorrhagic 

necrosis of the adrenal glands [309].

3. Phenylbutazone

Phenylbutazone is approved for the alleviation of musculoskeletal inflammation 

in the horse and dog. Phenylbutazone is a pyrazolone derivative with a pK, of 4.8 

[162]. In man, this group causes hypersensitivity reactions, diarrhea, vomiting, 

mucosal ulceration, hepatitis, nephritis, sweating, aplastic anemia and agranulocytosis 

[3]. The half-life in man is 72 hours owing to the extensive enterohepatic 

recirculation and renal tubular resorption [162], whereas in horses the reported values 

range from 4.8 [317] to 8.6 [19] hours. The reported half-life in man, like the horse 

varies considerably among subjects [162]. The half life is concentration dependent 

and for this reason it should not be used outside of the therapeutic range [318]. 

Phenylbutazone causes dose-dependent inhibition of superoxide generation at 

concentrations approximating therapeutic levels in humans [319]. This property adds 

to the anti-inflammatory potency of this drug [318]. It also enhances the excretion of 

uric acid which is beneficial in the treatment of gout in man [3]. In ponies, therapeutic 

doses decrease urinary sodium and chloride excretion with a concurrent decrease in 

plasma pH, bicarbonate and carbon dioxide [320]. Phenylbutazone reduces platelet 

function in ponies through both thromboxane/prostaglandin dependent and independent
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pathways [321]. However, unlike aspirin in man, phenylbutazone does not prolong 

bleeding times [321].

a. Anti-inflammatory effects 

Oral phenylbutazone in dogs with experimentally-induced urate arthritis 

significantly reduced the symptoms associated with the synovitis [101]. 

Phenylbutazone (4.4 mg/kg, intravenously) when administered to ponies with 

subcutaneously implanted carrageenan-soaked sponges significantly reduced the PGEj 

production in inflammatory exudates for at least 24 hours but it did not have any 

effect on leukocyte migration [322,323]. The same dose of phenylbutazone 

significantly reduced serum TXBj concentrations for 24 hours [324]. Pre-treatment 

with phenylbutazone also attenuated the endotoxin-induced rise in the stable metabolite 

of prostacyclin in equine plasma [223].

Oral administration of the therapeutic dose of phenylbutazone in ponies with 

carrageenan-induced inflammation also reduced prostaglandin concentrations and 

reduced skin temperatures below the incision line where the sponges were implanted 

[325]. The maximum depression of prostaglandin synthesis occurred at times of peak 

drug exudate concentration [325]. Also in ponies, the tissue cage fluid, peritoneal 

fluid and synovial fluid concentrations of phenylbutazone and the active metabolite, 

oxyphenbutazone were one third to two thirds of the corresponding plasma 

concentrations 6 and 12 hours after intravenous and oral doses of 4.4 mg/kg [323]. 

In another study by the same group, the level of phenylbutazone in inflammatory 

exudates from carrageenan soaked sponges in ponies approximated plasma levels from
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4 to 12 hours after intravenous administration [326], Administration of 14C-labelled 

phenylbutazone in rats with carrageenan-induced inflammation in the hind paw and 

neck resulted in high concentrations in the inflamed areas and also the stomach, small 

intestine and kidney. This effect was attributed to ion-trapping of the acidic drug 

intracellularly in environments with a low pH. Further, in chickens with urate- 

induced arthritis, the synovial fluid concentration of phenylbutazone was higher in 

inflamed joints as compared to normal joints and the concentration in these joints was 

higher than corresponding plasma values [263].

b. Pain relieving effects

Phenylbutazone failed to alter normal pain thresholds in horses as tested by the 

thermal evoked hoof withdrawal and skin twitch reflexes [183]. These results are in 

agreement with the belief that NSAIDs do not produce a true analgesia but inhibit the 

hyperalgesia associated with the sensitization of the peripheral afferent [163,271]. 

Drugs of the pyrazolone class are reported to be less potent analgesics than other 

NSAIDs in animals [318]. In clinical studies phenylbutazone was equivalent to 

naproxen in alleviating pain and joint stiffness in human patients with ankylosing 

spondylitis [327]. In a clinical study involving several species of domestic and exotic 

animals, phenylbutazone treatment resulted in an overall recovery rate from lameness 

of 68.97% [328].

c. Adverse effects

Toxic doses of phenylbutazone produce central nervous system depression, 

anorexia, diarrhea, hypoproteinemia, mucosal ulceration [329] and phlebitis [330].
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The ulcerogenic properties of this drug are more pronounced in the pony owing 

probably to less efficient absorption of oral doses in the gut [318]. Inhibition of 

prostaglandin plays an important role in the pathogenesis of ulcers as the co

administration of PGE2 with the toxic doses of phenylbutazone resulted in no clinical 

abnormalities [329].
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CHAPTER 3

QUANTIFICATION OF EICOSANOIDS IN' EQUINE PLASMA AND

SYNOVIAL FLUID

A. Introduction

The quantitation of eicosanoids in inflammatory, allergic and cardiovascular 

conditions has been performed most commonly using radioimmunoassay (RIA) 

[65,66,70,72,331-333]. Other quantitation techniques have been applied such as 

bioassay [136,334], high performance liquid chromatography (HPLC) [335-337], gas 

chromatography coupled with mass spectrometry (GC/MS) [338,339] and more 

recently, enzyme-linked immunosorbent assay (ELISA) [340-343]. The ELISA 

procedure offers advantages over RIA in that it is easier, faster, less expensive and 

produces no radioactive waste [341,344].

The detection of eicosanoids is complicated by the fact that these substances 

are very potent, having endogenous concentrations of a few pg/ml of plasma. Many 

have short biological half-lives [24]. For example, the in vivo half-life of leukotriene 

B4 (LTB4) in carrageenan exudate was reported as approximately 45 minutes [345]. 

Circulating prostaglandins are metabolized within minutes in the lung and liver [24].

Eicosanoid assays must be specific as both the prostaglandin and leukotriene 

series contain many similar compounds that are produced concurrently from 

polyunsaturated fatty acid precursors, mainly arachidonic acid. Many eicosanoids and 

their metabolites have minor structural differences in functional groups, such as

73
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hydroxy or keto groups and double bonds, that may make isolation by extraction and 

chromatography difficult [346]. Some eicosanoids are unstable and can undergo non- 

enzymatic degradation depending upon pH conditions or in the presence of albumin 

[24]. For example, the plasma metabolite of prostaglandin Ej (PGEj), 15-keto-13,14- 

dihydro-PGEj forms a bicyclic product by dehydration and an internal addition 

reaction [347].

Further complicating analyses are sampling methods such as venipuncture and 

tissue extraction which can activate phospholipase A2 resulting in ex vivo formation 

of eicosanoids [348]. The coagulation process routinely produces prostaglandins while 

cells such as neutrophils are capable of eicosanoid formation in whole blood. 

Therefore, it is recommended that biological samples be collected into chilled tubes 

containing inhibitors of prostaglandin and leukotriene synthesis and an anticoagulant 

with expedient removal of the cell fraction [348]. One group of investigators 

determined that collection of samples into tubes with ethylenediamine tetraacetate 

(EDTA) resulted in lower prostaglandin levels than those collected with heparin [349]. 

This same group also determined that centrifugation of samples at room temperature 

gave higher thromboxane and prostaglandin levels than samples centrifuged at 4 ' C. 

Subtle differences in these sampling techniques make comparison of eicosanoid 

concentrations obtained from different laboratories difficult.

Extraction of biological fluids before assaying eicosanoids is necessary to 

remove other lipids that may interfere with the analysis or cause erroneously 

calculated concentrations. Reports of assays without prior extraction show higher
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levels of these compounds than those found when extraction preceded the assay [350]. 

Several techniques for extraction have been published including various liquid/liquid 

techniques using organic solvents [333] and, more recently, solid phase extraction 

procedures [351-353]. Most of these methods involve acidification of the biological 

sample in order to protonate the eicosanoid and increase solubility in the organic 

solvents. In some cases purification by normal or reversed phase HPLC after 

extraction is necessary to isolate the compound(s) of interest before assaying by other 

means.

The purpose of this study was to evaluate methods of eicosanoid extraction and 

quantitation in equine plasma and synovial fluid. Specifically, two methods for 

extracting PGE2 and LTB4, and an ELISA method for quantitation of these eicosanoids 

in equine synovial fluid and plasma were examined. As the PGE2 ELISA was reported 

to have cross reactivity with PGEj, a method of validation and confirmation of this 

assay by mass spectrometry was developed.

B. Materials and methods

1. Sample collection

a. Plasma from digital veins 

Blood samples were collected from the digital veins of normal and laminitic 

horses (see also Chapter 6) using a 20 gauge, 1" needle. After 1-2 ml of blood were 

discarded, 10 ml were collected into chilled evacuated siliconized glass tubes 

(Vacutainer, Becton Dickinson, Rutherford, NJ) containing 3.3 /*g/ml of BW755C
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(Wellcome Research Laboratories, Beckenham, Kent, England) as an inhibitor of ex 

vivo eicosanoid synthesis [70] and 10 mg/ml of the anticoagulant, disodium 

ethylenediamine tetraacetate (EDTA) [348] purchased from Sigma Chemical Co., St. 

Louis, MO. Samples were centrifuged at 2,500 rpm for 15 minutes at 4° C (Beckman 

J21B, Palo Alto, CA). The platelet poor plasma was stored in polypropylene 

centrifuge tubes (Sarstedt, Newton, NC) at -20 ° C for 2 days then at -70° C until 

assayed [350].

b. Synovial fluid

Synovial fluid was collected from the left intercarpal joints of 24 horses with 

experimentally-induced synovitis (see also Chapter 4). Synovial fluid was aseptically 

withdrawn from each joint using a 20 gauge, 1" needle and 12 or 20 ml polypropylene 

syringes. The fluid was immediately transferred into tubes containing the inhibitors 

of eicosanoid synthesis. The use of BW755C in this project was discontinued due to 

limited availability. Instead, BWA4C (Wellcome Research Laboratories, Beckenham, 

Kent, England) was used as an inhibitor of ex vivo leukotriene synthesis along with 

indomethacin (Biomol, Plymouth Meeting, PA) as inhibitor of ex vivo prostaglandin 

synthesis. The concentration of BWA4C used was based on the studies on the in vitro 

inhibition of LTB4 in guinea pig blood [343]. Indomethacin was used at a 

concentration recommended by Benedetto [348]. Stock solutions containing 8.64 

mg/ml of BWA4C in dimethylsulfoxide (DMSO) and 6.6 mg/ml indomethacin in 

ethanol were prepared and stored at 4° C. Each chilled evacuated tube (Vacutainer, 

Becton Dickinson, Rutherford, NJ) contained 6.48 /xg/ml of BWA4C, 5 /xglml of
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indomethacin, 1.5 mg/ml of EDTA (K3) and 57 fil saline. As DMSO concentrations 

above 1.5% have been shown to cause hemolysis [354], saline was added to dilute the 

DMSO concentration in each 2 ml tube to 1.5%, with a final concentration in 2 ml 

of synovial fluid of 0.075% [354]. Tubes were then centrifuged at 2,500 rpm for 15 

minutes at 4° C (Eppendorf 5415C, Brinkman Instruments, Westbury, NJ). The cell- 

free synovial fluid was stored in polypropylene micro-centrifuge tubes (Dot Scientific, 

Inc., Flint, MI) at -20° C for 2 days and then at -70° C until assayed.

2. Extraction

Two extraction procedures were evaluated, a liquid/liquid extraction technique 

and a solid phase extraction method. For the digital vein eicosanoid concentration 

study, (see also Chapter 6) and for the mass spectrometry quantitation of PGEj in 

inflamed synovial fluid, a liquid/liquid extraction technique was used. Synovial fluid 

samples described in Chapter 4 were extracted via a solid phase extraction method. 

All reagents were HPLC grade and were purchased from commercial sources. Water 

was triple distilled and filtered (Modulab Polisher I™, Continental Water Systems 

Corp., San Antonio, TX).

a. Liquid/liquid extraction

For plasma samples, 4 ml were extracted for both the LTB4 and PGE^ ELISA 

assays. For the synovial fluid assays, 0.25 ml was used for determination of PGE2 

by ELISA and 0.575 ml was used for samples to be confirmed by mass spectrometry. 

One-half ml of synovial fluid was extracted for LTB4 determination by ELISA. Both 

plasma and synovial fluid were acidified to pH 3.5 with 1 N HC1 in polypropylene
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centrifuge tubes. Three volumes of ethyl acetate were added to extract the 

eicosanoids. After vortexing and centrifugation at 2,500 rpm for 15 minutes (Dynac, 

Becton Dickenson and Company, Parsippany, NJ), the aqueous and organic layers 

were separated. The ethyl acetate was evaporated under nitrogen.

b. Solid phase extraction

i. Preparation

Synovial fluid (0.5 ml) was extracted for LTB4 determination by ELISA. 

Samples processed using this technique contained high concentrations of PGEj 

(Chapter 4) which necessitated reduced volumes of synovial fluid or dilution in order 

to stay within the limits of PGE2 quantitation (10-5000 pg/ml). Volumes of 0.25,

0.125, 0.0625 or 0.01 ml were extracted depending on the anticipated concentration 

of PGE2. For synovial fluid obtained from horses with severe inflammation, serial 

dilutions of synovial fluid were made with water acidified to pH 3 with 1 N HC1 (1:10 

and 1:100) and the diluted sample was then extracted. Sep-Pak Plus™ cartridges 

containing 360 mg of C18 were purchased from the Millipore Corporation, Milford, 

MA. Pre-washed 20 ml syringe barrels (Sherwood Medical, St. Louis, MO) were 

attached to the cartridges and served as reservoirs for the synovial fluid and reagents. 

A modified polypropylene pipet tip was attached to the cartridge in order to direct 

effluent flow. The new cartridges and syringes were washed with 20 ml of hexane 

followed by 20 ml of ethyl acetate and 20 ml of methanol under vacuum from a 

manifold device (Amicon, Lexington, MA) to remove impurities and immunoreactive 

substances according to a modified method of Jubiz [355]. Previously used cartridges
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were washed with 40 ml of hexane, ethyl acetate and methanol before each extraction 

according to a modified method of Powell [351]. Cartridges were used for extraction 

a maximum of three times. Every cartridge was washed immediately before use with 

20 ml of methanol and pH 3 water according to a modified method of Powell [351].

ii. Synovial fluid extraction 

The synovial fluid was acidified to pH 3.5 using 1 N HC1 in a polypropylene 

centrifuge tube. Water (0.5 ml) acidified to pH 3 was added and the sample was 

vortexed for 15 seconds before being transferred to the cartridge reservoir. Care was 

taken not to transfer the precipitated protein as it was shown to clog the cartridge. 

The sample was allowed to flow through the cartridge slowly under slight vacuum 

pressure (<5 inches of mercury). After the sample was evacuated, 6 ml of pH 3 

water was added under vacuum to remove water soluble inorganic salts, amino acids, 

proteins and other polar compounds in the sample [350,351]. This flush was followed 

by 6 ml of hexane under vacuum to remove the neutral lipids in the sample. Finally, 

the cartridges were removed from the vacuum manifold and the eicosanoids were 

eluted from the cartridge with 6 ml of ethyl acetate using gentle pressure applied with 

a syringe plunger. The effluent was collected into polypropylene centrifuge tubes. 

The ethyl acetate was then evaporated under a stream of nitrogen gas.

c. Recovery studies 

Extraction efficiency for plasma and synovial fluid samples was determined 

using 5,6,8,11,12,14,15-3H-PGE2 (200 Ci/mmole) purchased from Advanced 

Magnetics (Cambridge, MA). Radioactivity in disintegrations per minute (dpm) of
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spiked samples and standards was counted on a scintillation counter (Packard Tri 

Carb™, Packard Instrument Co., Downers Grove, IL). Absolute recovery of 3H-PGE2 

and 3H-LTB4 was calculated by expressing the radioactivity (dpm) of 3 extracted 

standards in synovial fluid or plasma as a percent of the mean radioactivity of 3 non

extracted controls. Recovery was corrected for background radioactivity. Percent 

recovery was determined for both eicosanoids in plasma using the liquid/liquid 

technique and synovial fluid using liquid/liquid extraction, solid phase extraction, and 

also for solid phase extraction using methyl formate as the final eluting agent. The 

coefficient of variation (CV) of each technique was calculated from the mean and 

standard deviation (SD) of the percent recovery.

3. ELISA

Quantitation of plasma and synovial fluid eicosanoids was achieved by 

commercially available PGEj and LTB4 ELISA kits (Advanced Magnetics, 

Cambridge, MA). All reagents, standards and 96-well precoated micro-titer plates 

were provided in the kits. These assays were based on the principle of a competitive 

ELISA where PGE2 or LTB4 in the sample (reconstituted after extraction in buffer 

solution) competed with fixed amounts of alkaline phosphatase labelled PGEj or LTB4 

for binding to a limited number of sites of the specific rabbit antibody (anti-PGI^ or 

LTB4) bound to the microtiter well. Unbound material was removed by washing with 

a buffered saline solution. p-Nitrophenyl phosphate was added to each well as 

substrate for alkaline phosphatase. Color development was terminated following 

incubation at 37° C by the addition of 0.2 N sodium hydroxide. The intensity of the
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yellow colored product formed was inversely proportional to the amount of unlabelled 

eicosanoid bound to the well. Absorbance (optical density) was read at 410 nm by 

a microtiter plate reader (Dynatech MR5000, Dynatech Laboratories, Alexandria, 

VA). Optical density (OD) results were normalized by subtracting the mean 

absorbance of 2 blank wells (containing only p-Nitrophenyl phosphate and sodium 

hydroxide) from sample ODs. Samples with the greatest color development or optical 

density values (ODs) contained the least PGEj or LTB4. Absorbance was correlated 

with concentration by means of a standard curve ranging from 10 to 5000 pg/ml 

(Figure 2). Quantitation of unknown samples processed in duplicate was achieved by 

averaging the absorbance of sample duplicates and calculation of the concentration 

from the standard curve. All sample concentrations were then corrected for extraction 

efficiency.

a. Intra-assay vari. n 

An estimate of the within run precision or the variation between duplicate wells 

of the same sample run in the same assay under identical conditions was determined 

for PGE2 and LTB4. This represents the variability inherent in the assay, e.g., 

antibody binding, reagent stability, pipet accuracy, or plate reader accuracy. It was 

defined as the CV of duplicate wells and was calculated from the mean optical density 

and SD for each of 5 non-extracted standard concentrations. The CV values were 

averaged for 9 PGEj assays and 4 LTB4 assays at each concentration and overall ± 

SD.
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Figure 2: Standard curves from PGE2 and LTB4 ELISAs.
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b. Inter-assay variation

An estimate of the variation of non-extracted standards of PGE^ and LTB4 

assayed in different kits was determined. This value includes variations in incubation 

times, operator technique, manufacturing of kits and intra-assay variance. Inter-assay 

variation was defined as the CVs of 5 standard concentrations run in 9 PGEz assays 

and 4 LTB4 assays. An overall CV was determined by averaging the individual 

concentration CVs to get an overall CV ±  SD. In addition, the correlation coefficient 

of the standard curve was calculated for each assay (SigmaPlot, Jandel Corp., San 

Rafael, CA). The mean correlation coefficient +  SD was calculated for 9 PGEj 

assays and 4 LTB4 assays.

4. PGE^ confirmation

Synovial fluid obtained from the intercarpal joint of one horse 12 hours after 

induction of carrageenan synovitis was extracted using the liquid/liquid technique and 

assayed for PGEz by the ELISA procedure outlined above. A separate aliquot was 

also extracted using the liquid/liquid technique, subjected to purification by a HPLC 

technique and then assayed for PGE2 by GC/MS [356]. The results were then 

compared in an effort to confirm and validate the PGE2 ELISA. Before extraction, 

PGD2 (16 ng/sample or 1.92 ng on the GC column) was added to the synovial fluid 

and served as an internal standard for quantitation by GC/MS.
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a. Eicosanoid standards

PGD2 [(5Z,9o!, 13E, 15S)-9,15-Dihydroxy-1 l-oxoprosta-5,13-dien-l-oic acid] 

was used as the internal standard for PGE2 [(5Z, 1 la , 13E, 15S)-11,15-Dihydroxy-9- 

oxoprosta-5,13-dienoic acid]. Both were purchased from Cayman Chemical Co., Ann 

Arbor, MI and were stored in ethanol at -70° C.

b. Solvents

Liquid chromatography and mass spectrometry grade solvents were obtained 

from commercial sources. HPLC mobile phase A consisted of water, acetonitrile, and 

trifluoroacetic acid in a ratio of 75:25:0.0008 (pH approximately 6). Mobile phase 

B consisted of methanol, acetonitrile and trifluoroacetic acid at a ratio of 60:40:0.002. 

Each mobile phase was filtered through a 0.45 fim membrane filter (FP Vericel™, 

Gelman Sciences, Inc., Ann Arbor, MI).

c. High performance liquid chromatography (HPLC)

Synovial fluid was subjected to HPLC in order to isolate and collect PGE^ 

Samples were analyzed with a Hewlett Packard 1090 High Performance Liquid 

Chromatograph equipped with a variable volume auto-injector and a photodiode array 

detector set at 192 nm (4 nm bandwidth) with a reference spectrum of 450 nm (80 nm 

bandwidth). Instrument control, data acquisition, and peak integration were 

accomplished with Hewlett-Packard HPLC ChemStation software (Waldbronn, 

Germany). A 4 mm x 30 cm reversed phase column packed with 10 /xm 

octadecylsilyl derivatized silica particles (Varian, Walnut Creek, CA) maintained at 

ambient temperature was used. Solvents were run using a gradient between 100%
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mobile phase A and 100% mobile phase B over 40 minutes at a flow rate of 1 

ml/minute. After extraction by the liquid/liquid technique, the synovial fluid samples 

were dissolved in 120 /d of Mobile Phase A and transferred to a 100 gl HPLC 

autosampler vial insert (American Scientific Products, McGraw Park, IL) that allowed 

for complete injection of the sample volume.

Due to the low sensitivity of the diode array detector for PGEj, a radio

chromatography detector (Series A-500, Radiomatic Instruments and Chemical Co., 

Meriden, CT) was connected in series to the HPLC in order to establish the retention 

time of tritiated PGEj. The scintillation fluid, Flo-Scint II™ (Radiomatic Instrument 

and Chemical Co., Meriden, CT), was pumped through the detector at 4 ml/minute. 

The radioactivity of 3H-PGE2 spiked synovial fluid samples was determined in counts 

per minute (cpm). These samples were run immediately before incurred 

(experimental) samples to determine the retention time of PGEj.

Samples for PGE2 confirmation were injected onto the HPLC and collected 

within ±  0.75 minutes of the predetermined retention time of PGL,. This fraction 

was placed under a stream of nitrogen gas to evaporate the mobile phase and then 

stored at -20° C overnight.

d. Gas chromatography and mass spectrometry (GC/MS)

Standards for PGE2 were prepared using concentrations of 39.6, 79.0, 158.5, 

634.0, 1268.3, and 2536.0 ng/rnl. These values represented 118.9, 237.0, 475.6 pg, 

and 1.9, 3.8 and 7.6 ng of PGE2 injected on the GC column. PGD2 was added to 

each standard as an internal standard at a concentration of 640 ng/ml (1.92 ng on
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column). These standards were derivatized and analyzed immediately before incurred 

synovial samples in order to establish a standard curve for quantitation.

Prior to GC/MS analysis, all samples and standards were derivatized to 

increase molecule volatility and thermal stability [346]. PGE2 and PGD2 were 

esterified at the carboxyl terminus with pentafluorobenzyl bromide (PFB), the keto 

group was oximated (MO) and then the trimethylsilyl ether (TMS) derivative was 

formed at both hydroxy groups (Figure 3). Derivatization was accomplished by 

adding 10 fi\ of methanol, 50 /il of acetonitrile, 2 fd of pentafluorobenzyl bromide and 

1.5 fd of diisopropylethylamine to dried samples in glass vials with teflon-lined caps. 

The samples were vortexed and heated at 60° C for 15 minutes [357]. A 2% solution 

of methoxyamine hydrochloride in pyridine (25 fd) was added and samples were kept 

at room temperature overnight. After drying under nitrogen, 20 fd of water were 

added and the samples were extracted twice with 50 fd of ethyl acetate [358]. After 

drying again under nitrogen, 25 fd of N,0-bis(trimethylsilyl)-trifluoroacetamide 

(BSTFA) with 1 % trimethylchlorosilane (TMCS) were added and samples were heated 

for 15 minutes at 60° C according to a modified method of the manufacturer. All 

derivatizing reagents were purchased from Pierce Chemical Co., Rockford, IL.

Immediately following derivatization, 3 fd of each sample were injected into 

a Finnigan MAT 9610 Gas Chromatograph (Sunnyvale CA) using a modified method 

of Waddel et ah, 1983 [359]. A 30 M DB-5 column (J & W Scientific, Fulsom, CA) 

with 0.25 fim of polymer coating and an internal diameter of 0.22 mm was used in 

the splitless injector mode with a helium purge of 0.75 seconds. The initial
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temperature was 200° C. This was increased by 30° C per minute to a final 

temperature of 300° C. The injector and transfer line temperatures were set at 220 

and 300° C, respectively. The column was plumbed directly into a Finnigan MAT 

TSQ 4500 Mass Spectrometer (Sunnyvale, CA). The method of ionization was 

negative ion chemical ionization (NICI) using methane as the reagent gas. The ionizer 

source pressure was 0.5 Torr and the ionizer temperature was set at 150° C. Electron 

energy was 70 eV and the emission current was 0.30 mA. The electron multiplier 

was set at 2500 volts.

Data was acquired using multiple ion detection (MID) scanning quadrapole 3 

(Q3) for masses of 524, 434, 344 and 196. This type of selective ion monitoring 

enabled pg detection. The second isomer of PGE2 and PGD2 was used for 

quantitation. The base peak of the second isomer of PGE2 was 524 m/z and 434 m/z 

for PGD2. The abundance of each base peak was obtained from the mass spectrum 

by the computerized summing of scans from the initiation to the termination of 

individual isomer peaks. Baseline noise was subtracted from the summed abundances 

of each peak. Standard curves for quantitation of samples for PGEj confirmation 

were prepared using the ratio of base peak abundances of PGIi, and PGD2.

C. Results

1. Sample collection

Synovial fluid samples from normal equine joints were very viscous. To 

insure that the synovial fluid supernatants were free of cells that could contribute to
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ex vivo eicosanoid formation, 3 samples were evaluated for cellularity by microscopic 

examination of Wright’s stained direct smears. No white blood cells or platelets were 

found and slides contained scant numbers of red blood cells.

Several samples of synovial fluid from horses with acute synovitis were 

subjected to two freeze/thaw cycles before extraction and ELISA in order to determine 

if previously thawed samples could be refrozen and assayed at a later date. Both 

PGE2 and LTB4 levels increased markedly (485.40% and 393.77%, respectively) after 

two freeze thaw cycles.

2. Extraction

Percent recoveries of LTB4 and PGE2 from plasma using liquid/liquid 

extraction and synovial fluid using liquid/liquid extraction, solid phase extraction, and 

solid phase extraction with methyl formate as the final eluting agent are reported in 

Table 9. Recoveries of PGE2 from synovial fluid and plasma using the liquid/liquid 

technique modified from Coker et al., [333] were 67.95 and 43.82%, respectively. 

Recovery of LTB4 from synovial fluid and plasma using this method were 98.39 and 

39.13%, respectively.

Attempts were made to duplicate the solid phase extraction procedure of 

Powell [351,360] using aqueous ethanol as a sample diluent and initial wash followed 

by a water wash, a petroleum ether wash and elution using methyl formate. The 

reported recovery of PGEj from urine and plasma using this method is > 90%. 

However, in the present study this method demonstrated that recoveries of PGE2 and 

LTB4 were poor, in large part due the loss of eicosanoids from the Sep-Pak upon
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Table 9: Percent Recovery of PGE2 and LTB4 in synovial fluid and plasma using various techniques.

SYNOVIAL FLUID PLASMA

LIQUID/LIQUID SOLID PHASE- 
ETHYL 

ACETATE

SOLID PHASE- 
METHYL 

FORMATE

LIQUID/LIQUID

PGE2 % RECOVERY 67.95 61.04 48.97 43.82
CV 14.11 2.97 8.64 9.55

l t b 4 % RECOVERY 98.39 57.67 65.99 39.13
CV 7.37 12.25 11.70 10.06

(ii=3)

VOo
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application of the diluted sample fraction and the initial aqueous ethanol wash. It was 

determined that higher recoveries were obtained using water at pH 3 as the sample 

diluent and initial wash. Further, hexane was substituted for petroleum ether as it was 

found to produce less damage to the plastic syringe plungers. Ethyl acetate was found 

to give approximately equal recoveries (PGEj- 61.04%; LTB4- 57.67%) as the highly 

flammable and irritating methyl formate (PGE2- 48.97%; LTB4- 65.99%) when used 

with this modified method.

The cartridges and reservoirs were washed extensively before use to reduce the 

immunoreactive substances that were shown to interfere with the PGEj assay. Other 

researchers have also reported immunoreactive substances or other impurities from 

Sep-Paks that were not thoroughly washed before use [361,362]. According to Powell, 

cartridges can be re-used [351]. It was determined that cartridges could be re-used a 

maximum of three times without contributing any carryover immunoreactivity if they 

were washed with 40 ml each of hexane, ethyl acetate and methanol before each re

use.

3. ELISA

The limit of quantitation based on the lowest concentration of the standard 

curve was 10 pg/ml for both assays. According to performance characteristics 

supplied by the manufacturer, the sensitivity of the LTB4 ELISA was 8.9 pg/ml with 

minimal cross reactivity with other leukotrienes, prostaglandins and arachidonic acid 

metabolites (Table 10). The reported sensitivity of PGE2 ELISA was 1.5 pg/ml. The 

reactivity of this kit was low for other eicosanoids and metabolites tested except for
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Table 10: Percent cross reactivity of PGE2 and LTB4 ELIS As as determined at 50% B/B0. Standards 
were spiked into assay buffer (data supplied by Advanced Magnetics, Cambridge, MA).

PGEj LTB4

PGEj 100.0% l t b 4 100.0%
PGEX 50.0% 5(S),12(R)-DiHETE 6.7%

PGAj 6.0% 5(S),12(S) -Di-HETE 2 .0%
PGA, 1.9% l t c 4 < 1.0%
PGB, < 1.8% l t d 4 < 1.0%

PGB, < 1.8% l t e 4 < 1.0%

6-keto-PGEj < 1.8% 5-HETE < 1.0%
15-keto-l 3,14-dihydro-PGE, < 1.8% 12-HETE < 1.0%

PGF^ < 1.8% 15-HETE < 1.0%

5-HETE < 1.0% p g d 2 < 1.0%

12-HETE < 1.0 % PGEX < 1.0%
6-keto-PGEla < 1.0% PGE, < 1.0%
p g d 2 < 1.0% Thromboxane B2 < 1.0%

Arachidonic acid < 1.0 % 20-hydroxy-LTB4 < 1.0%

Thromboxane B2 < 1.0% Arachidonic acid < 1.0%
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PGEt which had 50% reactivity with the PGE2 antibody at 50% B/B0 (sample 

OD/blank OD).

a. Intra-assay variation

The intra-assay variance or the within assay precision of the PGE^ and LTB4 

ELISA as expressed as the coefficient of variation are presented in Table 11. 

Individual concentration and overall CVs were less than 10% as recommended by 

Feldcamp and Smith [363].

b. Inter-assay variation

The between assay variability based on the coefficient of variation of 9 PGEj 

assays and 4 LTB4 assays was greater than the intra-assay variation (Table 11). The 

overall repeatability of these assays was 14.32% for PGE2 and 17.28% for LTB4. 

These values are in the range reported for ELIS As [342,364], The mean correlation 

coefficient + SD for the standard curves was 0.9869 ± 0.0102 for PGEj and 0.9850 

±  0.0140 for LTB4.

3. PGEj Confirmation

A gradient of the 2 mobile phases reported by Powell [335] provided good 

chromatography of PGE2 with minor column and flow rate modifications. A 

representative chromatogram of 3H-PGE2 spiked synovial fluid is shown in Figure 4. 

Figure 5 shows liquid chromatograms of 10 f i g  of PGE2 and PGD2 obtained with 

photodiode array detection as well as a radio-chromatogram of 3H-PGE2. Photodiode 

array chromatograms are expressed as milliabsorbance units (mAU) versus time, 

whereas radio-chromatograms are expressed as dpm versus time. The chromatograms
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Table 11: Inter- and intra-assay variance (CV) of PGEj and LTB4 ELIS As.

PGEj LTB4

CONCENTRATION
(pg/ml)

INTER-ASSAY INTRA-ASSAY INTER-ASSAY INTRA-ASSAY

10 16.89 3.00 14.50 3.50

50 15.46 2.38 9.78 3.44

250 10.77 5.32 14.73 3.44

1000 12.52 2.79 18.40 3.04

5000 15.95 4.12 28.99 6.69

OVERALL CV 
(mean ± SD)

14.32 
±  2.57

3.52 
±  1.19

17.28 
±  7.23

4.02 
±  1.50

PGE2 n=9 
LTB4 n=4

VO
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Figure 4: Liquid chromatogram with radio-chromatography detection of 3H-PGE2 spiked synovial fluid. The 
small peak at 29 to 30 minutes (*) is likely a degradation product of PGEj.
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Figure 5: Liquid chromatograms of PGE2 and PGD2 obtained with photodiode array detection at 192 nm and 3H- 
PGE2 obtained with radio-chromatography detection. The slow increase in absorbance over time in the 
chromatograms of PGE2 and PGD2 is due to the solvent gradient. VO
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obtained with photodiode array detection at a wavelength of 192 nm show interference 

due to the solvent gradient, making detection of small quantities of PGE^ difficult. 

Thus, the retention time of PGE2 was confirmed before collection of incurred samples 

using 3H-PGE2 with a radio-chromatography detector. 3H-PGE2 eluted between 0.4 

and 0.12 minutes before PGE2 due to the increase in hydrophilicity associated with the 

3H-labelled compound [365]. The retention times of PGE2 and PGD2 were 24.89 

and 25.26 minutes, respectively. PGE2 and PGD2 differ only in the position of the 

hydroxy and keto groups (PGEj-1 l-hydroxy-9-keto; PGD2- 9-hydroxy-l 1-keto). This 

difference accounts for the subtle difference in HPLC and GC/MS retention times.

The limit of detection for PGEj on GC/MS was 118 pg on column (39.6 

ng/ml). A representative chromatogram of a standard solution of PGEj (237 pg on 

column) and PGD2 (1.92 ng on column) is shown in Figure 6 . PGEj and PGD2 

formed syn and anti methoxime isomers [366,367]. The first isomer of PGE^ and 

PGD2 coeluted but their second isomers separated adequately with the PGD2 isomer 

eluting before PGE^, as reported previously [359]. The second isomers were used for 

quantitation by expressing the abundance of each base peak of PGEj to PGD2 as a 

ratio. NICI of these eicosanoids resulted in fragmentation of the molecular ion (M)‘ 

of the compound of interest (parent compound with derivatized functional groups, total 

molecular weight, 705). Cleavage of PFB from the molecular ion (M-PFB)' at the 

ester linkage resulted in the 524 m/z ion. Loss of one TMS as an alcohol resulted in 

the 434 m/z ion. The 344 m/z ion was produced following cleavage of the second 

TMS alcohol. The 196 m/z ion represented PFB with an oxygen molecule cleaved
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from the prostaglandin. MID scans showing the intensity of the base peak of the 

second isomer of PGEj (524 m/z) and the base peak of the second isomer of PGD2 

(434 m/z) are shown in Figure 7. The standard curve using concentrations of PGEj 

ranging from 118.9 pg to 7.61 ng on column was linear with a coefficient of 

determination of 0.9981 (Figure 8).

The GC/MS chromatogram of synovial fluid obtained from a horse with 

experimentally-induced synovitis for PGEz confirmation is shown in Figure 9. Scans 

showing base peak abundances of PGE2 and PGD2 are shown in Figure 10. GC/MS 

analysis detected 1.07 ng of PGEj (on column) which was calculated to be 15.49 

ng/ml in the original synovial fluid sample. The ELISA assay of a separate aliquot 

of the same synovial fluid resulted in 20.79 ng/ml of PGE2.

D. Discussion

According to initial studies, PGE2 and LTB4 levels in synovial fluid of horses 

with acute synovitis increased after repeated freeze/thaw cycles. This was not due to 

cellular metabolism of arachidonic acid as these samples contained no cells capable 

of eicosanoid production. The reason for this effect is not readily apparent, although 

it has been seen previously in plasma but not serum [333,349]. Perhaps the 

subcellular particles containing cyclooxygenase and lipoxygenase enzymes metabolized 

the arachidonic acid present in membrane fragments in the synovial fluid. Or perhaps 

eicosanoids bound to proteins and glycosaminoglycans in the synovial fluid are 

released upon damage caused to these molecules by repeated freeze/thaw cycles.
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Owing to this effect, all samples reported in the present studies were thawed 

immediately prior to extraction and assay. Results from other laboratories have 

demonstrated that eicosanoids are stable when thoroughly frozen (-20° C) for 

prolonged periods of time [333].

Results from the liquid/liquid extraction technique indicated that this method 

gave good recovery from small volumes of synovial fluid, whereas larger volumes of 

plasma resulted in lower recovery. Solid phase extraction of synovial fluid resulted 

in lower recovery of LTB4 than the liquid/liquid procedure, although the solid phase 

recovery was in the range of reported extraction efficiencies. Recovery of 

leukotrienes using Sep-Paks with modified Powell methods were reported to be 73 % 

[368] and 79% forLTC4 [369] and 57% [362], 73% [345], 89% [355] and 96% [370] 

for LTB4. Recovery of PGEj using solid phase extraction has been reported to be > 

90% [351,368,371] which is higher than the recovery determined in this study. 

Recoveries calculated from serum [368], plasma, urine [351] and tissue culture 

medium [362] may not be comparable to equine synovial fluid due to the viscosity of 

this matrix which could bind or trap eicosanoids.

Solid phase extraction of eicosanoids from biological matrices has largely 

replaced liquid/liquid extraction owing to the specificity, efficiency and rapid 

processing of samples [346]. The technique as originally described by Powell [372] 

is based on the affinity of the eicosanoids for the non-polar octadecylsilyl (ODS) 

packing material of the cartridge. The cartridges function as reversed phase 

chromatography columns [351]. The application of strong organic solvents such as
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hexane or petroleum ether allows for the removal of very non-polar compounds such 

as triglycerides and other lipids. The application of more polar solvents such as 

methyl formate or ethyl acetate elutes the eicosanoids. In the present study, this 

approach allowed for a more selective extraction procedure than the liquid/liquid 

extraction techniques.

Most eicosanoids are small haptens that have only one epitope and are 

unsuitable for the original "sandwich" ELISA where two molecules of antibody 

recognized the same antigen [344]. Most eicosanoid ELISA procedures, including the 

ones described in this study, are of the competitive type where labelled antigen 

competes with sample antigen for binding on the specific antibody. In immunoassay 

procedures the degree of displacement of the antigen from the antigen-antibody 

complex is quantified. The binding of the labelled antigen is inhibited by the antigen 

of interest (PGE2 or LTB4 in the sample). However, cross-reacting substances of 

similar structure and excessive amounts of unrelated compounds may interfere with 

binding. Although too expensive and complicated to be used for routine analysis, 

GC/MS has been used as a validation procedure for immunoassays [373]. GC/MS is 

regarded as the most specific and sensitive method for analysis of eicosanoids. 

Specificity is based on the gas chromatographic retention time of the compound and 

detection of the characteristic fragment ions by mass spectrometry [339].

The HPLC technique used for isolation and collection of PGEj before GC/MS 

has been shown to separate many cyclooxygenase and lipoxygenase metabolites that 

may then be subjected to GC/MS [335,336]. However, in the present study, the use
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of radio-chromatography of tritium labelled standard was needed to confirm the 

retention time of PGEj due to the relative insensitivity of the photodiode array 

detector. This technique proved less expensive than using f i g  quantities of PGE2 on 

the photodiode array detector as the radio-chromatography detector was sensitive to 

ng quantities of tritiated PGE*.

Quantitation of eicosanoids is accomplished most effectively by the highly 

sensitive NICI GC/MS technique [346]. The analysis of PFB derivatives of 

eicosanoids by NICI GC/MS has the advantage of producing a high yield of stable 

ionized products and a low fragmentation rate [346]. The sensitivity of this method 

is due to fragmentation that is primarily directed away from the prostaglandin 

molecule thereby leaving the carbon skeleton intact [366]. Quantitation of eicosanoids 

by GC/MS using stable isotope dilution techniques is most often accomplished using 

deuterated analogues of the compound of interest acting as internal standards. These 

techniques are advantageous in GC/MS due to the similar structure and properties of 

the isotope and native compound [374]. The technique employed in this study, 

whereby a structurally similar compound is used as an internal standard, represents 

a simple and sensitive alternative to the use of deuterated compounds.

Analytical problems have been an obstacle in eicosanoid research. Thus, 

progress in this field is dependent on the advancement and validation of analytical 

techniques [338]. The ELIS As used in these experiments to quantitate PGEj and 

LTB4 in equine synovial fluid and plasma had not been described previously for use 

in the horse. Cross reactivity information obtained from the manufacturer indicated
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that the LTB4 assay was highly specific and sensitive. As unique interfering 

substances from equine synovial fluid are unlikely, validation procedures were not 

performed for LTB4. The PGE2 assay although sensitive, had 50% cross reactivity 

with PGEi. The validation procedures used in the present study confirmed the results 

of the PGE2 ELISA on inflamed equine synovial fluid. GC/MS analysis detected 

15.49 ng/ml of PGEj in the synovial fluid while the ELISA performed on a separate 

aliquot of the same sample resulted in 20.79 ng/ml. These results are in good 

agreement taking into account minor losses of sample during purification by HPLC 

and derivatization before GC/MS. Therefore, the PGE2 ELISA appears to specific for 

this compound in equine synovial fluid, indicating the absence of interferences from 

this matrix.
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CHAPTER 4

EFFECT OF KETOPROFEN AND PHENYLBUTAZONE 

ON ACUTE SYNOVITIS

A. Introduction

Synovitis accompanies most forms of equine joint disease [75]. Synovitis is 

characterized by inflammation of the synovium without gross disturbance of the 

articular cartilage or disruption of major supporting structures [83]. Clinical signs of 

acute synovial inflammation include: synovial effusion with distension of the joint 

capsule; increased skin temperature over the joint; hypertrophy and hyperplasia of the 

synovia resulting in a palpable thickening of the membrane; a decrease in the range 

of motion of the joint; and lameness in the affected limb. Eicosanoids and other 

inflammatory mediators contribute to the inflammatory response by increasing 

synovial vascular permeability [17], increasing the metabolic rate of synoviocytes 

[37], and causing congestion of the microvascular bed [93]. As the permeability of 

the synovial membrane increases, proteins accumulate in the joint resulting in an 

increase in fluid osmotic pressure. The resulting effusion of synovial fluid often 

results in pain and overt lameness [94]. In humans there is a positive linear 

correlation between intra-articular pressure and joint pain [95]. The inflammatory 

mediators released by local tissue destruction in the joint activate nociceptors and also 

sensitize these receptors through lowering of activation thresholds [96,97]. Further,

108
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the release of substance P and other neuropeptides [98] may potentiate the 

inflammatory response and result in neurogenic inflammation [99],

Experimentally, synovitis has been induced in horses, ponies, calves, dogs, 

rabbits and rats by the intra-articular injection of a variety of chemical substances. 

Models of joint inflammation have been used for screening and evaluation of anti

inflammatory agents [101] The equine joint is a unique site for an inflammatory 

model due to the structure and function of the synovial membrane and the sheer size 

of the joint space. The synovial membrane acts as a selective barrier in the joint in 

that it allows for the passage of molecules of less than approximately 12,000 dal tons 

in molecular weight [76]. Transfer of small molecules to and from the synovial fluid 

occurs readily due to specialized structures within the membrane such as: a synovial 

lining cell layer that is 1 to 4 cells thick and often incomplete [74]; lack of 

desmosomes or a basement membrane [77]; and the presence of fenestrated capillaries, 

secretory and macrophagic cells, surface pores and large numbers of lymphatics [74].

Nonsteroidal anti-inflammatory drugs (NSAIDs) are considered the mainstay 

of treatment for non-septic joint disease in animals [76,375]. It is well documented 

that these agents alleviate the pain and lameness associated with joint inflammation 

[101] through reduction in the peripheral nociceptive impulses from the inflamed joint 

[197] and through central analgesic mechanisms [148,273]. However, few studies 

have described the anti-inflammatory effects of these agents in detail in experimentally 

induced joint inflammation [297].
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The purpose of this study was: 1) to develop a self-limiting, reproducible 

model of acute synovitis which increased prostaglandin E2 (PGE2) and leukotriene B4 

(LTB4) synovial fluid concentrations along with other measurable joint inflammatory 

responses; 2) compare the magnitude and time course of the anti-inflammatory and 

eicosanoid inhibitory effects of ketoprofen and phenylbutazone in the acute synovitis 

model; and. 3) compare the ability of ketoprofen and phenylbutazone to reduce the 

clinical signs of acute synovitis. The approved therapeutic doses of ketoprofen (2.2 

mg/kg) and phenylbutazone (4.4 mg/kg) were used. In addition, the phenylbutazone 

molar equivalent dose of ketoprofen (3.63 mg/kg) was used in order to compare the 

potency of ketoprofen and phenylbutazone. NSAIDs and saline were administered at 

the same time as carrageenan induction in order to determine the anti-inflammatory 

effects of the NSAIDs on developing and acute inflammation.

The intercarpal joint was chosen for induction of synovitis because of its large 

volume of synovial fluid [376] as it communicates with the carpometacarpal joint in 

most (90%) horses [74]. Further, this joint has three access sites: medial and lateral 

to the extensor carpi radialis tendon and at the palmarolateral reflection of the 

intercarpal joint capsule, distal to the accessory carpal bone [377]. As most of the 

horses used in this study were retired racing Thoroughbreds, the left carpus was used 

because of the increased incidence of joint pathology in the right carpus [378,379]. 

Inflammation was induced in each horse only once due to the potential for permanent 

cartilage damage with successive carrageenan injections [108]. Further, it has been
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documented that the prior injection of carrageenan in the rat paw causes hyperalgesia 

to develop much faster when the contralateral paw is injected [272].

B. Materials and methods

1. Experimental animals

Twenty-four mares and geldings (5 American Quarter Horses and 19 

Thoroughbreds) weighing from 410 to 554 kg and ranging from 6 to 13 years of age 

were used. Prior to induction of synovitis, horses were judged to be healthy and 

sound based on physical examination, lameness evaluation, complete blood count, left 

intercarpal synovial fluid clinical pathology analysis and radiographic examination of 

the left carpus. Horses with radiographic or synovial fluid pathology of the 

intercarpal joint were excluded.

All horses were vaccinated at least three weeks prior against eastern and 

western equine encephalomyelitis, influenza, tetanus (Equi-Flu EWT™, Coopers, 

Mundelein, IL) and rhinopneumonitis (Rhinomune™, SmithKline Beecham Animal 

Health, Exton, PA). The horses were dewormed with oxibendazole (Equipar™, 

Coopers, Mundelein, IL). Horses were housed in 10.9 x 12.5 feet stalls and were 

maintained on 5 pounds of a pelleted ration (Purina Horse Chow 100™, Purina Mills 

Inc., St. Louis, MO) containing: a minimum of 10% protein; 2% fat; a maximum of 

25 % fiber; and a vitamin/trace mineral supplement twice daily with mixed grass hay 

(11% protein, 1.4% fat, 24% fiber) and water provided ad libitum.
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2. Drugs and reagents

a. NSAID solutions for administration

Ketoprofen (Ketofen™) was obtained commercially from Aveco Company, 

Inc., Fort Dodge, IA. Each ml of the sterile solution contained: 100 mg ketoprofen; 

L-arginine, 70 mg; citric acid to adjust pH to approximately 7; and benzyl alcohol, 

0.25 ml as a preservative. Phenylbutazone (Butazolidin™) was obtained commercially 

from Coopers Animal Health, Inc., Kansas City, KS. Each ml of the sterile solution 

contained: phenylbutazone, 200 mg; sodium hydroxide to adjust pH to between 9.5 

and 10.0; and benzyl alcohol, 10.45 mg as a preservative.

b. Carrageenan solution

Carrageenan (type IV; molecular weight, approximately 300,000) was 

purchased from Sigma Chemical Co., St. Louis, MO. This type of non-gelling 

carrageenan was isolated from two seaweed species, Gigartina aciclulaire and 

Gigartina pistillata. It was sterilized in powder form using ethylene oxide (H.W. 

Andersen Products, Haw River, NC) and then mixed to a suspension with sterile

0.9% saline according to a modified method of Higgins and Lees to produce a 1% 

solution [70]. All horses were induced using the same batch of carrageenan as 

different batches are known to vary in their inflammatory potency [380]. Cultures of 

the 1 % solution were made in duplicate on blood agar (aerobic culture medium) and 

in thioglycollate broth (anaerobic culture medium) weekly for the duration of this 

study [381]. These cultures were maintained at 37° C for three days and were 

examined for microbial growth daily. The solution was thoroughly mixed and (0.3
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ml) was drawn up in a sterile 1 ml syringe using a 25 gauge, 1 inch needle on the 

morning of each experimental day.

3. Experimental protocol

a. Overview

In the beginning of each experimental session, horses were evaluated for 

lameness and then brought into the environmentally controlled laboratory and 

restrained in an equine stanchion. The left carpal joint was radiographed and 

measured. The horse was then sedated and after 5 minutes, blood was collected and 

heart rate, respiratory rate and rectal temperature were determined. A thermography 

apparatus was applied to the joint and then it was scrubbed in preparation for 

arthrocentesis. In baseline sessions, synovial fluid was collected. Then at time 0, 

carrageenan was injected into the joint and ketoprofen (2.2 mg/kg and 3.63 mg/kg), 

phenylbutazone (4.4 mg/kg) or saline was administered intravenously. Horses were 

subsequently evaluated according to this protocol at 1, 3, 6, 9, 12, 24 and 48 hours 

after administration.

b. Horse preparation

Each horse was washed and shaved over the entire carpal region 24 hours prior 

to drug administration. Indwelling catheters (14 gauge, 5.7 cm) (Quick-Cath™, 

Baxter Healthcare Corp., Deerfield, IL) were aseptically placed bilaterally in the 

jugular veins of each horse before each session.
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c. Synovial fluid collection and induction o f synovitis 

Horses were sedated with intravenous detomidine HC1 (Dormosedan™, Norden 

Laboratories, Lincoln, NE) at doses of 10 jig/kg before the baseline collection, and 

5.0 ^ig/kg before each post-treatment arthrocentesis to reduce the risk of iatrogenic 

joint hemorrhage and trauma. In addition, all horses were nose twitched during 

arthrocentesis. Before each arthrocentesis the entire left carpal area was scrubbed 

with Hibiclens™ (Stuart Pharmaceuticals, Wilmington, DE) and alcohol at least three 

times with a final scrub directly over the site for arthrocentesis. Sterile needles (20 

gauge, 1 inch), syringes (12 ml or 20 ml) and gloves were used to collect fluid from 

the intercarpal joint while the limb was held in the flexed position by another 

examiner. Immediately following the collection of the baseline synovial fluid sample,

0.3 ml of 1 % solution of sterile carrageenan was injected into the left intercarpal joint 

(dorsolateral aspect) using sterile technique [52]. An independent examiner 

administered the NSAIDs or saline via the left jugular catheter immediately following 

carrageenan injection.

Synovial fluid was then collected from the intercarpal joint at 1, 3, 6, 9, 12, 

and 24 hours after drug and carrageenan administration. Fluid was collected 

altematingly from the dorsolateral and dorsomedial aspect of the intercarpal joints. 

In addition, the palmarolateral access site was used intermittently when the joint 

become effused. Sites for arthrocentesis were rotated in order to minimize iatrogenic 

hemorrhage into the joint capsule. At each time point, the maximum volume of
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synovial fluid available was withdrawn in order to reduce the degree of discomfort in 

the horse caused by joint effusion.

All synovial fluid samples were aliquoted for ketoprofen determination, 

bacterial culture, clinical pathology analysis and eicosanoid determination. Fluid (at 

least 1.5 ml) for the PGEj and LTB4 assay was placed immediately into chilled 

evacuated tubes containing 1.5 mg/ml of ethylenediamine tetraacetate K3 (EDTA) 

(Vacutainer, Becton Dickinson, Rutherford, NJ) with 6.48 /tg/ml of BWA4C, 5 pig/ml 

of indomethacin, and 57 fA saline. Tubes were then centrifuged at 2,500 rpm for 15 

minutes at 4° C (Eppendorf 5415C, Brinkman Instruments, Westbury, NJ). The cell- 

free synovial fluid was stored in polypropylene micro-centrifuge tubes (Dot Scientific, 

Inc., Flint, MI) at -20° C for 2 days, then at -70° C until assayed. Fluid for clinical 

pathology analysis (at least 0.75 ml) was placed into 2 ml evacuated tubes containing 

3 mg/ml of EDTA (Vacutainer, Becton Dickinson, Rutherford, NJ). Fluid for 

ketoprofen determination was processed according to methods described in Chapter 

5.

Synovial fluid volume was recorded and the fluid was graded for hemorrhage 

based on the following scale:

Grade 1: A slight amount of blood contamination, often obtained upon exiting 

the joint.

Grade 2: Moderate blood contamination upon exiting the joint or fluid that 

had a moderate red or brownish-red haze indicating formation of unconjugated 

bilirubin from the breakdown of erythrocytes.
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Grade 3: Very hazy, opaque, red or brownish-red fluid.

Grade 4: Fluid containing a large quantity of frank blood or evidence of 

clotting.

d. Blood collection

All NSAIDS and detomidine were administered via the left jugular catheter. 

The right jugular catheter was used for blood collection before drug and carrageenan 

administration (baseline) and at 1, 3, 6, 9, 12, 24 and 48 hours after drug injection 

for determination of complete blood counts. Blood was also collected for 

determination of plasma ketoprofen concentrations as outlined in Chapter 5. The 

patency of each catheter was maintained after each blood collection with 3 ml of 100 

IU/ml of heparinized saline. Before blood was collected, 2-3 ml was discarded to 

remove any residual heparin from the catheter. Blood (7 ml) was collected with a 18 

gauge, 1.5 inch needle and a 20 ml syringe and then placed immediately into 7 ml 

evacuated glass tubes containing 10.5 mg of EDTA as an anticoagulant (Vacutainer, 

Becton Dickinson, Rutherford, NJ) and stored at 4° C until analysis.

e. Lameness evaluation

Horses were evaluated at a walk and trot on a concrete surface and graded for 

lameness as follows [377]:

Grade 1: The horse exhibited a normal gait at a walk. The trot showed a 

slightly shortened weight bearing phase for the left forelimb with an audible 

cadence abnormality. There was even head and neck lifting for each foot.
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Grade 2: The walk showed stride changes with no abnormal head or neck 

lifting. The trot showed obvious lameness with uneven head and neck lifting. 

Grade 3: The lameness was obvious at a walk and trot with prominent head 

and neck lifting as the left forelimb was weight bearing.

Grade 4: The horse experienced difficulty bearing weight on the left forelimb. 

f  Radiography

The left carpus was radiographed (Min X-Ray 300, Evanston, IL) laterally 

while held in rigid flexion by the examiner, in order to obtain the angle of maximum 

flexion of the joint, using 20.3 x 25.4 cm film cassettes and TML diagnostic film (T- 

Mat™, Eastman Kodak Co., Rochester, NY). After development of the radiographic 

film (RP X-Omat Processor, Eastman Kodak Co., Rochester, NY) lines were drawn 

on the radiographic image along the long axis of the radius and third metacarpal bones 

at the measured midpoint of each diaphysis. The angle formed by the intersection of 

these lines dorsal to the carpus was measured with a standard protractor to provide 

an estimate of the range of motion of the carpus.

g. Joint circumference and effusion grade 

The circumference of the intercarpal joint was measured in cm using a standard 

tape measure. To ensure measurement consistency, the joint was marked with 

fingernail polish in three places (medial, lateral and palmar) in the beginning of each 

experimental session. Each horse was subjectively evaluated for carpal effusion based 

on the following scale:

Grade 1: Slight effusion around the site of carrageenan injection.
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Grade 2: Moderate effusion of the intercarpal joint only without distention of 

the palmarolateral joint pouch.

Grade 3: Marked effusion of the intercarpal joint with distension of the 

palmarolateral joint pouch. Some swelling proximal and distal to the 

intercarpal joint.

Grade 4: Severe swelling of the entire carpal region.

h. Temperature, heart and respiratory rates

Rectal temperature was obtained from a rectal probe (Model RET-1, Sensortek, 

Clifton, NJ) and digital thermometer (Model TH-6D, Sensortek, Clifton, NJ). Heart 

and respiratory rates (bpm) were obtained by auscultation.

i. Carpal thermography

A contact thermography system (Novatherm, Med Tech Products, Inc., 

Dayton, OH) was used to detect thermal emissions from the dorsal surface of the left 

carpus. The detector consisted of a liquid crystalline latex membrane wrapped around 

a pressurized frame with a viewing window. Eight membranes were used with mean 

detection temperatures of 22, 24, 26, 28, 30, 32, 34 and 36° C. Each membrane had 

an approximate temperature range of 4° C. Color changes in the membrane were 

correlated with temperatures by color calibration scales on each membrane 

(approximately 0.8° C change per color). Membranes were held against the dorsal 

surface of the carpus for 60 seconds, withdrawn and immediately photographed 

(Polaroid auto-focus single lens camera with Polaroid instant film (779, ASA 640), 

Polaroid Corp., Cambridge, MA). Room temperature in the laboratory was
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maintained between 23 and 26° C. Isothermic areas on the photographic images were 

calculated using a digitizing tablet and computerized area integration program 

(SigmaScan, Jandel Corp., San Rafael, CA). Each isothermic area was expressed as 

a percent of the total photographed area and the overall temperature of the joint was 

calculated. For each horse, post-injection data were expressed as a percent change 

from baseline in order to minimize variance between horses in basal joint 

temperatures.

4. Synovial fluid analysis

a. Clinical pathology 

Fluid was kept at 4° C and warmed to room temperature (20-22° C) before 

analysis. Fluid was analyzed for cellularity, protein and quality of hyaluronic acid. 

The total number of nucleated cells (neutrophils, large mononuclear cells, 

lymphocytes, eosinophils and basophils) and red blood cells per y\ were determined 

by a multispecies automated hematology analyzer (Baker 9000, Baker Instrument Co., 

Allentown, PA). Samples with total nucleated cell counts of less than 500 cells//d 

were reanalyzed by the direct hemocytometer method [382]. The overall quality of 

the hyaluronic acid in the synovial fluid was determined by the mucinous precipitate 

quality test (MPQ). This serves as a reliable qualitative measure of the concentration 

and polymerization of synovial fluid hyaluronic acid [376]. Synovial fluid (0.5 ml) 

was added to 5 ml of 5% acetic acid and mixed thoroughly. The resultant precipitate 

was subjectively graded as: 1) good- tight ropy mass in clear solution; 2) fair- soft 

mass with some shreds; or 3) poor- shredded, small, soft masses in a turbid solution
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[75]. Synovial fluid protein concentration was analyzed after centrifugation 

(Hemofuge™, American Scientific, manufactured by Heraeus-Christ, Osterod, West 

Germany) at 12,000 rpm for 4 minutes and was determined by a hand held 

refractometer (TS Meter, American Optical, Keene, NH). Values below 2.5 g/dl 

were not determined. These determinations were performed by the Louisiana State 

University, School of Veterinary Medicine, Clinical Pathology Laboratory.

Differential leukocyte counts were made from direct and concentrated synovial 

fluid smears. For samples with total nucleated cell counts less than 7,500 cells/^1, 

5 drops of synovial fluid were concentrated on a glass slide by centrifugation at 1,000 

rpm for 6 minutes (Cytospin 2, Shandon Southern Products, Astmoor Runcorn, 

Chesire, England). Samples with elevated nucleated cell counts (>7,500 cells/jd) 

were examined directly on glass slide smears. Slides were air dried and stained with 

modified Wright’s stain (Hema-Tek™, Miles Laboratory, Inc., Elkhart, IN) using an 

automatic stainer (Hema-Tek™ slide stainer, model 4480, Ames Co.; Miles 

Laboratory, Inc., Elkhart, IN). A standard light microscope with 10X, 40X and 100X 

oil immersion objective lenses was used for all synovial fluid cell counts (Ernst Leitz 

Wetzlar, Germany). Slides were examined for neutrophils, lymphocytes, large 

mononuclear cells (monocytes and macrophages [382]), eosinophils and basophils. 

100 cells were counted for every 30,000 nucleated cells//d.

b. Bacterial culture 

Synovial fluid remaining in the collecting syringe after aliquoting for the other 

assays was diluted with sterile 0.9% saline and cultured in duplicate on blood agar
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plates and in thioglycollate broth tubes. Cultures were incubated at 37° C for 3 days 

and were examined visually for bacterial or fungal growth every 24 hours.

c. Eicosanoid determination

i. Extraction

Synovial fluid (0.5 ml) was extracted before LTB4 determination by ELISA. 

In order to stay within the range of ELISA quantitation for PGE2 (10-5000 pg/ml), 

synovial fluid volumes of 0.25, 0.125, 0.0625 or 0.01 ml were extracted depending 

on the anticipated concentration of PGE^ Further, synovial fluid obtained from some 

horses at times 6, 9 and 12 hours was diluted with water acidified to pH 3 with 1 N 

HC1 (1:10 and 1:100) and the diluted sample was then extracted. Sep-Pak Plus™ 

cartridges containing 360 mg of Clg (Millipore Corporation, Milford, MA) were 

washed and cleaned according to methods described in Chapter 3. The synovial fluid 

was acidified to pH 3.5 using 1 N HC1 in a polypropylene centrifuge tube. One-half 

ml of pH 3 water was added and the sample was vortexed for 15 seconds before being 

transferred to the cartridge reservoir. The sample was allowed to flow through the 

cartridge slowly under slight vacuum pressure (< 5  inches of mercury). After the 

sample was evacuated, 6 ml of pH 3 water was added under vacuum followed by 6 

ml of hexane. The eicosanoids were eluted from the cartridge with 6 ml of ethyl 

acetate using gentle pressure applied with the syringe plunger. The ethyl acetate was 

then evaporated under a stream of nitrogen gas.
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ii. ELISA

Quantitation of plasma and synovial fluid eicosanoids was achieved by 

commercially available PGE2 and LTB4 ELISA kits (Advanced Magnetics, 

Cambridge, MA). These assays were based on the principle of a competitive ELISA 

where PGEz or LTB4 in the sample competed with fixed amounts of alkaline 

phosphatase labelled PGEj or LTB4 for binding to a limited number of sites on the 

specific rabbit antibody (anti-PGEj or LTB4) bound to the microtiter well. 

Absorbance (optical density) was read at 410 nm by a microtiter plate reader 

(Dynatech MR5Q00, Dynatech Laboratories, Alexandria, VA). Samples with the 

greatest color development or optical density values (ODs) contained the least PGEj 

or LTB4. Absorbance was correlated with concentration by means of a standard curve 

ranging from 10 to 5000 pg/ml. All sample concentrations were then corrected for 

extraction efficiency. For a complete description of the ELISA procedure, refer to 

Chapter 3.

5. Hematology

All blood samples were kept at 4° C then warmed to room temperature before 

analysis. Total leukocyte (WBC) and red blood cell (RBC) counts were determined 

by the hemocytometer method [383,384] using the Unopette™ micro-collection system 

(WBC- model 5853; RBC- model 5850, Becton, Dickinson and Company, 

Rutherford, NJ). Determination of whole blood packed cell volume (PCV%) was 

accomplished by centrifugation of glass capillary tubes at 11,700 to 13,700 rpm for 

5 minutes (Autocrit™ II, model 0574, Clay Adams; Becton, Dickinson and Company,
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Parsippany, NJ) [384]. Plasma obtained from the centrifuged capillary tubes was 

analyzed for protein (g/dl) by a hand held refractometer method (TS Meter, American 

Optical, Keene, NH). Plasma fibrinogen was determined by heating these centrifuged 

capillary tubes for 4 minutes at 56° C and then centrifuging again for 5 minutes [384]. 

Protein in the heated plasma was determined by the refractometer. Fibrinogen (g/dl) 

was calculated by subtracting the heated plasma protein concentration from the 

original plasma protein value and multiplying by 1,000. Blood smears were prepared 

on glass slides for differential leukocyte counts, air dried and stained with modified 

Wright’s stain (Hema-Tek™, Miles Laboratory, Inc., Elkhart, IN) using an automatic 

stainer (Hema-Tek™ slide stainer, model 4480, Ames Co.; Miles Laboratory, Inc., 

Elkhart, IN). Cells (100) were differentiated into neutrophils, lymphocytes, 

monocytes, eosinophils and basophils. Platelets were also enumerated from the 

stained blood smears. A standard light microscope with 10X, 40X and 100X oil 

immersion objective lenses was used for all hematological counts (Ernst Leitz, 

Wetzlar, Germany).

6. Study design and statistical analysis

Twenty-four horses received ketoprofen (2.2 mg/kg and 3.63 mg/kg), 

phenylbutazone (4.4 mg/kg) and saline intravenously according to a Latin Square 

design [385]. Each treatment was administered to 6 horses and each horse was used 

only once. Treatments assigned to horses were coded before the initiation of the 

study. All drug administrations, tests and analyses were performed by individuals



www.manaraa.com

124

unaware of the treatment code. The treatment code was broken at the end of the 

study.

All data except for eicosanoid concentrations were analyzed using one-way 

analysis of variance (ANOVA) for repeated measures [386,387]. When indicated by 

the ANOVA, multiple comparisons were performed using Tukey’s w procedure [388]. 

Differences between treatments at each time were considered significant when P <

0.05.

PGEj and LTB4 synovial concentration data were analyzed independently using 

an analysis of variance for a split plot design with repeated measures where treatment 

constituted the main plot and the time by treatment interaction was the subplot 

[386,389]. The paucity of synovial fluid available for eicosanoid assay at some time 

points resulted in missing data. This precluded the use of the ANOVA as this 

procedure excludes all the data from a particular horse if only one time point is 

missing. Instead, data were analyzed initially by a univariate approach for overall 

treatment, time, and time by treatment interaction effects. Where indicated by the 

univariate analysis, treatment means (averaged over time) were compared using 

Tukey’s w procedure. Eicosanoid concentrations (averaged over treatments) were 

compared at times 0, 1,3, 6, 9, 12, 24 and 48 hours by Tukey’s w procedure. Post 

treatment times that were found to have significantly (P < 0.05) different eicosanoid 

concentrations than baseline were analyzed for differences between individual 

treatments by pairwise Student’s t tests, using the least squares means procedure to 

adjust for missing data [388,386]. Differences between treatments at each time were



www.manaraa.com

125

considered significant when P < 0.05. Multiple comparisons of treatments were thus 

preplanned, i.e. performed only at times indicated by the Tukey’s w procedure, so as 

to not inflate the comparisonwise error rate [388].

C. Results

Before initiation of this project, a pilot study was performed on 2 horses in 

order to refine sampling techniques and assay procedures and to ensure that the 

synovitis was transient with no lasting articular damage. The experimental protocol 

was similar except that these 2 horses were not administered systemic NSAIDs at the 

time of carrageenan induction. The first horse was humanely euthanized for an 

unrelated hindlimb musculoskeletal disorder 72 hours after carrageenan induction. 

The articular cartilage of the intercarpal joint (third and intermediate carpal bones) of 

this horse was grossly and histologically normal. Upon gross examination, the 

synovium was slightly hyperemic and thickened. Histologically, the synovial 

membrane showed a minimal non-suppurative inflammatory response with hypertrophy 

and hyperplasia of the synovial cells resulting in increased folding of the synovial 

villi. Lameness subsided in both of these horses by 24 hours. Synovial fluid 

collected from the second horse 5 months after induction was determined to be normal 

upon clinical pathology analysis. Based on the pilot study results, it was determined 

that the synovitis was transient and many of the parameters returned to near baseline 

by 48 hours.
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Overall treatment effects for all parameters tested in the 24 carrageenan treated 

horses are listed in Table 12. For the clinical parameters, there was a significant 

difference among treatments for synovial fluid volume, lameness grade, carpal 

effusion grade and carpal thermography. For the synovial fluid clinical pathology 

parameters, significant treatment effects were observed for protein and PGEj 

concentrations. For the hematological parameters, only the number of eosinophils and 

basophils showed a significant treatment effect.

1. Synovial fluid volume and appearance

The volume (mean + standard error (SEM)) of synovial fluid in 24 horses 

obtained from the left intercarpal joint at baseline was 4.54 ml ±  0.24. The volume 

of synovial fluid increased over time in all horses after induction. However, 

phenylbutazone significantly reduced the volume of synovial fluid as compared to 

saline at 1, 9 and 12 hours after administration (Figure 11A). Further, 

phenylbutazone significantly reduced the synovial fluid volume as compared both to 

doses of ketoprofen at 9 and 12 hours. The remaining treatments failed to affect 

synovial fluid volume significantly.

No significant treatment effects for subjective grade of hemorrhage were 

obtained. However the mean hemorrhage grade for all horses increased over time 

with a peak at 12 hours. When data were averaged over all horses, the hemorrhage 

grade ranged from 0.83 ± 0.19 at baseline to 3.29 ±  0.19 at 12 hours post-induction 

(Table 13). Synovial fluid samples often contained visible amounts of yellowish 

fibrin. This was removed from the sample before analysis. A few samples with
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Table 12: Statistical analysis of overall treatment effects.

CLINICAL PARAMETERS P SYNOVIAL FLUID 
CLINICAL 

PATHOLOGY

P HEMATOLOGY P

SYNOVIAL FLUID VOLUME 
(ml)

0.0092* NUCLEATED
CELLS/M

0.3611 WBC//il 0.0908

SYNOVIAL FLUID 
HEMORRHAGE GRADE

0.7151 RBC/jtl 0.4862 RBC/jtl 0.7829

LAMENESS GRADE 0.0015* MPQ grade 0.1296 PCV (%) 0.7261

MAX. FLEXION ANGLE (°) 0.1601 PROTEIN (g/dl) 0.0064* PROTEIN (g/dl) 0.8187

JOINT CIRCUMFER. (cm) 0.3469 NEUTROPHILS 0.8492 FIBRINOGEN (g/dl) 0.8644

CARPAL EFFUSION GRADE 0.0432* MONO. CELLS/M 0.3681 NEUTROPHBLS/mI 0.4993

RECTAL TEMP. (°C) 0.1848 LYMPHOCYTES/pl 0.8936 MONOCYTES//tl 0.4000

HEART RATE (bpm) 0.3653 EQSINOPHILS/fd 0.2448 LYMPHOCYTES//1I 0.4235

RESPIRATORY RATE (bpm) 0.9279 BASOPHILS/^! 0.2670 EOSINOPHILS//*! 0.0047*

CARPAL THERMOGRAPHY
(°C)

0.0072* PGEz (pg/ml) 0.0056* BASOPHELS/mI 0.0375*

ROOM TEMP. (°C) 0.7151 LTB4 (pg/ml) 0.0603 PLATELETS/jtl 0.8886
P = Probability estimate obtained from analysis of variance, treatments include phenylbutazone (4.4 mg/kg), 
ketoprofen (3.63 mg/kg), ketoprofen (2.2 mg/kg) and saline.
^Statistically significant at P < 0.05
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Figure 11: Effect of NSAIDs and saline on (A) lameness grade and (B) volume of synovial fluid obtained at each
arthrocentesis. Statistically significant treatment means as compared to saline are indicated by (*). Carrageenan
and NSAIDs were administered at time 0 (n=6).
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Table 13: Means* (±  SEM) of non-significant clinical parameters.

TIME

0 1 3 6 9 12 24 48

HEMORRHAGE 0.83 2.17 2.54 2.63 2.75 3.29 3.09 2.57
GRADE ±0.19 ±0.25 ±0.26 ±0.27 ±0.26 ±0.19 ±0.23 ±0.25

MAX. FLEXION 21.08 22.94 26.13 28.63 27.58 30.21 27.22 24.00
ANGLE (°) ± 1.01 ±0.92 ±1.34 ±1.55 ±1.41 ±2.26 ±1.80 ± 1.01

JOINT 28.72 28.81 28.85 29.24 29.41 29.55 29.47 29.37
CIRCUMFERENCE
(cm)

±0.25 ±0.27 ±0.26 ±0.27 ±0.27 ±0.27 ±0.32 ±0.31

RECTAL 37.85 37.81 37.70 37.90 38.18 38.30 37.98 37.80
TEMPERATURE (°C) ±0.06 ±0.07 ±0.07 ±0.09 ±0.07 ±0.08 ±0.08 ±0.07

HEART RATE (bpm) 29.29 29.67 28.75 30.42 30.63 31.71 29.83 28.87
±0.70 ±0.76 ±0.71 ±0.75 ±0.61 ±0.71 ±0.74 ±0.75

RESPIRATORY RATE 10.79 8.29 8.50 10.96 11.17 13.54 11.83 9.48
(bpm) ±0.57 ±0.40 ±0.40 ±1.05 ±0.85 ±1.56 ±1.35 ±0.70

*Since there were no significant treatment effects for the above parameters, values reported above represent 
averages over 24 horses.
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hemorrhage grades of 4 contained evidence of coagulation. These clots would often 

dissolve upon gentle inversion of the EDTA tube.

2. Lameness grade

All horses but five (3 with phenylbutazone, 4.4 mg/kg; 1 with ketoprofen, 2.2 

mg/kg; and 1 with ketoprofen, 3.63 mg/kg) became lame after carrageenan 

administration. The remaining horses returned to soundness by 48 hours after 

induction (Figure 11B). Ketoprofen (3.63 mg/kg) significantly reduced the lameness 

score as compared to saline at 3 hours post dose. Ketoprofen (2.2 mg/kg) similarly 

reduced lameness at 3 hours and at 6 hours. Phenylbutazone (4.4 mg/kg) reduced the 

lameness score as compared to saline at 6, 9 and 12 hours after administration. 

Further, phenylbutazone significantly reduced lameness as compared to both doses of 

ketoprofen at 12 hours post dose.

3. Maximum flexion angle

There were no significant treatment effects for the maximum flexion angle as 

determined by radiography of the carpus held in rigid flexion by the examiner. 

However, the flexion angle increased over time with a peak at 12 hours. When data 

were averaged over all treatments, the maximum flexion angle ranged from 21.08° 

±  1.10 at baseline to 30.21° ±  2.26 at 12 hours after induction (Table 13).

4. Joint circumference and effusion grade

There were no significant treatment effects for the circumference of the 

intercarpal joint (Figure 12A). The mean circumference ranged from 28.72 cm ± 

0.25 at baseline to 29.55 cm +  0.27 at 12 hours post-induction (Table 13).
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Figure 12: Effect of NSAIDs and saline on (A) intercarpal joint circumference and (B) carpal effusion grade.
Statistically significant treatment means as compared to saline are indicated by (*). There were no significant
treatment effects on joint circumference. Carrageenan and NSAIDs were administered at time 0 (n=6).
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Both doses of ketoprofen reduced the subjective grade of joint effusion at 3 

hours as compared to saline. The high dose of ketoprofen also reduced joint effusion 

at 6 hours as compared to saline (Figure 12B). There were no significant effects 

associated with phenylbutazone administration.

5. Temperature, heart and respiratory rates

There were no significant treatment effects for rectal temperature, heart rate 

or respiratory rate (Table 13). Rectal temperature ranged from 37.85° C ±  0.06 at 

baseline to 38.30° C ±  0.08 at 12 hours. Heart rate ranged from 29.29 bpm ±  0.70 

to 31.71 bpm + 0.71 at 12 hours. Respiratory rate ranged from 10.79 bpm + 0.57 

at baseline to 13.54 bpm ± 1.56 at 12 hours.

6. Carpal thermography

Joint temperature increased over time in the saline treated animals with a peak 

at 9 to 12 hours. Phenylbutazone significantly reduced the overall joint temperature 

as compared to saline from 3 to 48 hours after administration (Figure 13A). 

Phenylbutazone also significantly reduced joint temperatures as compared to 

ketoprofen (3.63 mg/kg) at 3 hours and ketoprofen (2.2 mg/kg) from 6 to 24 hours. 

A graph of room temperature is included for comparison in Figure 13B. Room 

temperature was constant over time and there were no significant treatment effects.

7. Synovial fluid clinical pathology

There were no significant treatment effects for total number of nucleated cells 

per ix 1, red blood cells per /*1, MPQ grade and the number of neutrophils, large 

mononuclear cells, lymphocyte, eosinophils and basophils per fx\ (Table 14). Further,
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effects of room temperature. Carrageenan and NSAIDs were administered at time 0 (n=6).



www.manaraa.com

Table 14: Means* (±  SEM) of non-significant synovial fluid clinical pathology parameters.

SYNOVIAL FLUID
CLINICAL
PATHOLOGY

TIME 0 1 3 6 9 12 24 48

NUCLEATED CELLS x 
l t f V

0.40
±0.08

3.43
±0.30

9.75
± 1.88

155.41
±13.2

155.59
±8.64

101.89
±8.13

52.51
±3.42

15.02
±1.72

RED BLOOD CELLS x
i t f V

121.64
±54.87

417.08
±116.40

575.63
±172.29

562.08
±118.13

517.12
±76.80

542.67
±89.08

413.70
±90.02

318.04
±81.27

MPQ GRADE 1.17
±0.08

1.38
± 0.12

2.58
± 0.12

2.63
±0.13

2.56
±0.14

2.63
±0.14

1.87
±0.14

1.87
±0.16

NEUTROPHILS x 
lO3/^!

0.16
±0.05

1.90
± 0.22

9.45
±1.87

144.98
±12.07

145.26
±8.24

91.70
±8.07

38.20
±3.06

8.75
±1.35

MONONUCLEAR 
CELLS x 103 //d

0.13
± 0.02

0.89
± 0.21

0.14
±0.03

8.45
±1.79

10.53
±1.83

8.58
±0.83

11.58
± 1.20

5.36
±0.48

LYMPHOCYTES 
x lO2/^ 1

0.79
±0.17

5.73
±0.75

1.47
±0.43

12.45
±6.08

8.87
±1.99

6.12
±1.35

25.89
±11.62

6.46
±1.16

EOSINOPHILS/^1 18.01
±10.18

110.67
±30.86

10.48
±5.63

594.04
±378.45

116.92
±84.24

0.00
± 0.00

34.96
±34.96

0.00
± 0.00

BASOPHn.S/jd 0.42
±0.42

5.17
±3.67

0.00
± 0.00

41.83
±41.83

0.00
± 0.00

0.00
± 0.00

0.00
± 0.00

0.00
± 0.00

*Since there were no significant treatment effects for the above parameters, values reported above represent averages 
over 24 horses.
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there were no significant treatment effects when the differential cell counts were 

expressed as a percent of the total nucleated cell count. There was a significant 

treatment effect on protein concentrations (g/dl). The phenylbutazone-treated horses 

had significantly increased synovial fluid protein concentrations at 12, 24 and 48 hours 

as compared to saline. At 24 hours, phenylbutazone increased the protein 

concentration as compared to both doses of ketoprofen (Figure 14A). The mean 

synovial fluid protein concentrations at baseline were 2.51 g/dl ±  0.01. The peak 

levels occurred at 9 hours for all treatments except phenylbutazone which peaked at 

24 hours. Synovial protein in normal horses as determined by the refractometer 

method is generally reported to be low (less than 2.5 g/dl) [75] as synovial fluid is 

considered a dialysate of blood plasma with hyaluronic acid [74].

The mean number of nucleated cells per /xl of synovial fluid ranged from 0.40 

±  0.08 x 103 at baseline to 155.59 ±  8.64 x 103 at 9 hours (Table 14). Horses 

administered saline had peak levels occurring at 6 hours 202.13 ±  15.22 x 103 while 

the NSAID treated horses tended to have peak levels at 9 hours (Figure 14B). 

Normal levels for the horse are generally reported to be less than 500 cells//fi [382]. 

The cells were predominantly neutrophils from 1 hour to 48 hours with an increasing 

percentage of large mononuclear cells at 24 and 48 hours. There was also an increase 

in the number of red blood cells in the synovial fluid with peak in cell numbers at 3 

hours (Table 14). There was considerable variation in the number of red cells in 

synovial fluid at all time points. The was a moderate decrease in the MPQ grade after 

carrageenan administration with values returning to near baseline at 48 hours. The
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Figure 14: Effect of NSAIDs and saline on (A) synovial fluid protein concentration and (B) nucleated cells.
Statistically significant treatment means as compared to saline are indicated by (*). There were no significant
treatment effects on the number of nucleated cells. Carrageenan and NSAIDs were administered at time 0 (n=6).
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mean MPQ grade ranged from 1.17 ± 0.08 at baseline to 2.63 ±  0.13 and 2.63 ± 

0.14 at 6 and 12 hours, respectively (Table 14).

Microscopic examination of synovial fluid smears often revealed protein 

folding and degenerating or dead cells in varying stages of cellular breakdown from 

3 through 24 hours after induction. Vacuolation of large mononuclear cells and 

neutrophils was often seen from 6 to 12 hours. Occasionally, clumps of platelets and 

synovial lining cells were noted.

8. Bacterial cultures

Examination of blood agar plates and thioglycollate broth tubes revealed no 

bacterial growth in any of the carrageenan cultures. Broth tubes and agar plates of 

a few synovial fluid samples contained evidence of bacterial or fungal growth. 

However, the growth was not consistent between duplicates or subsequent samples. 

Based on these inconsistencies and the clinical signs of the horses, these samples were 

most likely contaminated with non-pathogenic flora from the air or person performing 

the microbial culture.

9. Synovial fluid eicosanoid concentrations

The mean baseline concentration of PGEj was 0.42 ng/ml + 0.07 (Figure 

15A). The concentrations of PGEj increased dramatically over time with peak levels 

occurring at 9 hours (79.19 ng/ml ±  33.83) in horses administered saline. For all 

horses, concentrations returned to near baseline levels by 48 hours. There was a 

significant overall treatment effect for PGEz when data was analyzed over all sampling 

times according to the univariate procedure. Results from the Tukey’s multiple
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comparison procedure indicated that ketoprofen (2.2 mg/kg) and phenylbutazone 

reduced the PGE2 concentrations as compared to saline. Tukey’s procedure was then 

used to compare eicosanoid concentrations (averaged over treatments) at each post

dose time to baseline, in order to determine when the concentrations were different 

from baseline. The results indicated that means for time 6 , 9 and 12 hours were 

significantly different from baseline means. Based on the significant time effect, 

individual treatment means at 6, 9 and 12 hours were compared using the Student’s 

t tests. At 6 hours, phenylbutazone and ketoprofen (2.2 mg/kg) significantly reduced 

the PGEj concentrations as compared to saline. At 9 hours post administration, both 

doses of ketoprofen and phenylbutazone reduced PGEj as compared to saline. At 12 

hours after administration, only phenylbutazone reduced levels when compared to 

saline. Ketoprofen (3.63 mg/kg) produced PGE2 concentrations significantly greater 

than phenylbutazone and ketoprofen (2.2 mg/kg) at 6 and 9 hours.

LTB4 concentrations were associated with no significant (P = 0.0603) overall 

treatment effects (Figure 15B). The mean baseline concentration was 0.04 pg/ml ±  

0.01. Levels peaked at 3 hours post-dose (1.26 pg/ml +  0.37) and returned to near 

baseline values by 9 hours.

10. Hematology

No treatment effects were obtained for WBC count, RBC count, plasma protein 

(g/dl), fibrinogen (g/dl), PCV (%) or platelet count (Table 15). However there was 

a significant treatment effect for the number of eosinophils and basophils per /il 

(Figure 16A and B). At 1 hour post-dose, eosinophils in phenylbutazone treated
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Table 15: Means* (±  SEM) of non-significant hematological parameters.

TIMED 1 3 6 9 12 24 48

HEMATOLOGY

WHITE BLOOD CELLS 
x ltfVjtL

9.64
+0.51

9.08
±0.44

9.83 
±  0.38

10.28
±0.43

11.99
±0.65

12.58
±0.56

10.06
±0.36

9.64
±0.38

RED BLOOD CELLS 
x 1Q6/jiL

8.40
± 0.20

7.48
±0.27

8.20
±0.26

7.95
± 0.22

7.94
±0.19

8.02
± 0.20

7.85
±0.29

7.94
±0.14

PROTEIN (g/dl) 7.36
±0.09

7.12
±0.08

7.32
± 0.11

7.20
± 0.11

7.18
± 0.11

7.20
± 0.10

7.26
±0.08

7.42
±0.09

FIBRINOGEN (g/dl) 287.50
±32.03

250.00
±20.85

233.33
±18.71

237.50
±13.20

279.17
±28.22

250.00
±21.70

308.70
±22.59

334.78
±30.55

PCV (%) 38.08
±0.97

34.58
±0.77

37.58
±0.98

37.29
±0.71

36.63
±0.85

37.79
±0.76

36.35
±0.79

36.04
±0.55

NEUTROPHILS x 1 0 V 5.70
±0.36

5.83
±0.40

6.30
±0.36

6.83
±0.40

8.58
±0.59

8.44
±0.43

6.28
±0.28

5.90
±0.25

MONOCYTES x l t f V 0.36
±0.05

0.33
±0.05

0.32
±0.05

0.40
±0.07

0.37
±0.05

0.51
±0.08

0.37
±0.05

0.23
±0.03

LYMPHOCYTES x lO3/ ^ 3.16
±0.26

2.60
±0.16

2.96
±0.18

3.11
±0.36

2.74
± 0.22

3.36
±0.26

3.18
±0.24

3.13
± 0.22

PLATELETS x HP/pl 198.25
±14.85

196.75
±13.52

198.31
±16.54

192.83
±16.98

188.33
±15.54

194.79
±13.49

192.48
±9.92

203.17
±12.78

*Since there were no significant treatment effects for the above parameters, values reported above represent averages 
over 24 horses.
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Figure 16: Effect of NSAIDs and saline on the number of blood (A) eosinophils and (B) basophils. Statistically
significant treatment means as compared to saline are indicated by (*). Carrageenan and NSAIDs were
administered at time 0 (n=6).
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horses were greater than saline and both doses of ketoprofen. At 6 hours, 

phenylbutazone treated horses had higher eosinophil counts than ketoprofen (2.2 

mg/kg) and saline. At 9 and 12 hours, phenylbutazone also was associated with 

higher numbers of eosinophils than saline. At 12 hours, basophils in horses 

administered phenylbutazone were higher than both doses of ketoprofen and saline. 

However, the eosinophil and basophil numbers were not outside of the normal ranges 

(eosinophils- 0.0-0.8 x 103 cells//xl; basophils- 0.0-0.3 x 103 c e l l s / [390]. Mean 

peripheral blood WBC counts were within normal ranges except at 12 hours when the 

mean count rose to 12.58 x 10’ cells//xl + 0.56 (normal range for the horse is 6-12 

x 10’ cells//xl [390]). This leukocytosis was due to a mature neutrophilia in most 

horses. The mean neutrophil count at this time was 8.44 x 103 + 0.43 cells/^1 

(normal range for the horse is 3-6 x 103 cells//xl [390]). Further, although the total 

WBC counts were not increased, many horses were neutrophilic at 3, 6, 9 and 24 

hours after induction. No other hematologic abnormalities were noted.

D. Discussion

Carrageenan-induced synovitis has been used previously in the horse to isolate 

leukocytes from an inflammatory exudate, but the clinical effects and eicosanoid 

concentrations in synovial fluid were not described [52]. A pilot study was performed 

initially to determine the clinical effects of intra-articular carrageenan and to refine 

methodology. The pilot study showed that the carrageenan-induced synovitis produced 

no articular damage 72 hours after administration, although there was still evidence
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of synovial inflammation. No synovial fluid abnormalities were noted 5 months after 

induction. Horses with carrageenan synovitis (n=24) appeared clinically normal 

within 2 weeks following induction with no lameness, heat, effusion or palpable 

thickening of the joint capsule or synovial membrane. These results indicate that the 

horses experienced a transient synovitis that resulted in no obvious lasting damage to 

the joint. Thus our initial objective of inducing self-limiting inflammation was 

achieved.

The volume of synovial fluid obtained from the left intercarpal joint and the 

size of these joints (effusion grade and joint circumference) rose dramatically after 

induction of synovitis. Phenylbutazone reduced the synovial fluid volume at the time 

of peak inflammation (9-12 hours) to a greater extent than either dose of ketoprofen. 

However, phenylbutazone did not reduce the subjective grade of effusion while both 

doses of ketoprofen produced significant reduction at 3 hours and there was no 

significant treatment effect on joint circumference. These parameters all measure joint 

distension, but they have subtle qualitative differences which may account for the 

discrepancies in treatment effects. An increase in effusion grade accounted for 

increases in subcutaneous and periarticular edema as well as synovial fluid distension, 

whereas the volume of synovial fluid reflected the amount of synovial fluid obtained 

from the intercarpal joint only. The circumference of the intercarpal joint appeared 

to be a less sensitive estimate of joint distension than the effusion grade and synovial 

fluid volume, due to presence of bony protuberances on the equine carpus. The
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swelling and effusion associated with synovitis in the early stages of development 

often occurred between these prominences and thus were not directly measurable.

Carrageenan-induced synovitis produced a variable degree of lameness: 5 

horses out of 24 did not show lameness at any time post-induction and while a few 

horses became markedly lame, others were only slightly effected. Despite this 

variability, there were significant treatment effects. Phenylbutazone more effectively 

relieved lameness than either dose of ketoprofen. There appeared to be no clear 

ketoprofen dose related effect, as the high dose (phenylbutazone molar equivalent 

dose) of ketoprofen had a short lived effect at 3 hours and the therapeutic dose 

reduced lameness from 3 to 6 hours.

Phenylbutazone reduced the overall temperature of the joint in the early stages 

of the inflammatory process with effects lasting to 48 hours after administration. This 

effect was greater than the therapeutic dose ketoprofen for most of the times tested. 

As the surface temperature of the joint is related to blood flow to the region, these 

results may indirectly reflect that phenylbutazone inhibits carrageenan-induced 

vasodilation over an extended period. A similar time course has been observed 

previously for phenylbutazone in a carrageenan-induced subcutaneous inflammation 

model [325].

The number of nucleated cells in synovial fluid rose dramatically with peak 

levels occurring at 6 to 9 hours. This primarily neutrophilic exudate was likely 

attributable to the increase in the synovial fluid concentration of the potent chemotactic 

agent, LTB4 [27,28]. In addition, PGEj has been shown to be chemotactic for equine
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neutrophils and both of these eicosanoids play a significant role in the recruitment of 

neutrophils to the site of inflammation [20]. These results are similar to leukocyte 

numbers from tissue cage studies with carrageenan. However, the number of cells 

obtained from joint fluid were an order of magnitude higher than the tissue cage [67]. 

Cellular migration was likely impeded in the tissue cage model as compared to the 

synovitis model by the presence of fibrous tissue around and within the polypropylene 

device. Synovitis accompanying clinical cases of degenerative joint disease in the 

horse results in nucleated cell counts of up to 10,000 cells//xl [75]. Nucleated cell 

counts in excess of 50,000 cells//w.l with a predominance of neutrophils in clinical 

equine cases usually indicates septic arthritis [75,94]. Based on the cell count, protein 

concentration and the MPQ grade, this model of experimentally-induced synovitis 

appeared to be quite similar to clinical cases of equine joint infection [114].

There were no significant treatment effects associated with the number of 

nucleated cells in the inflamed synovial fluid or any of the other clinical pathology 

parameters except for protein concentration. The effects of NSAIDs on leukocyte 

numbers in inflammatory exudate are contradictory and have not been correlated with 

cyclooxygenase inhibition [15]. Ketoprofen when administered within the therapeutic 

dose range has been shown to reduce leukocyte counts in other carrageenan-induced 

inflammation models [15,299]. Phenylbutazone (4.4 mg/kg) did not affect leukocyte 

numbers in an equine model of subcutaneous inflammation as compared to control 

[323], while low doses of phenylbutazone and other NSAIDs stimulated leukocyte 

migration [50]. Phenylbutazone increased the synovial fluid protein concentration in
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the late stages of the inflammatory process. This unexpected effect is likely due to 

the significant reduction in synovial fluid volume associated with phenylbutazone 

treatment.

Erythrocytes are not usually found in normal synovial fluid unless 

contamination occurred during arthrocentesis (iatrogenic hemorrhage) [376]. 

However, hyperemia of the synovial membrane during synovitis greatly increases the 

potential for hemorrhage into the joint [75]. Further, joints in this study were 

aspirated 8 times over a 48 hour period which increased the likelihood of hemorrhage 

into the joint cavity. The iatrogenic hemorrhage in these joints most likely contributed 

to the total nucleated cell counts [382]. The eosinophils and basophils noted in the 

synovial fluid are likely the result of intra-articular hemorrhage as eosinophils are rare 

constituents of synovial fluid and basophils have not been reported to be present in 

non-hemorrhagic synovial fluid [376]. In addition, blood contamination of synovial 

fluid could have contributed to eicosanoid production (refer to data described in 

Chapter 6). However, this probably had little impact on the treatment effects of these 

parameters as the grade of hemorrhage was not significantly different among 

treatments.

There was no bacterial growth in the carrageenan cultures and synovial fluid 

cultures. Joint infection in these horses cannot be ruled out definitively as it is not 

uncommon for synovial fluid from infected joints to culture negatively [75]. 

However, the rapid reversal of lameness and the decrease in the number of synovial 

fluid nucleated cells over time in all horses would indicate non-septic synovitis.



www.manaraa.com

147

There was a dramatic increase in PGEj concentrations in the synovial fluid 

after carrageenan administration. The peak concentration in horses administered 

saline was approximately 200 times the baseline level at 9 hours. The LTB4 

concentrations also increased markedly in all horses. Peak levels were 14 times over 

baseline concentrations at 3 hours in horses administered saline. The peak levels of 

PGEj and LTB4 in control animals were similar to those found in subcutaneous 

models of carrageenan-induced inflammation [69-72]. The LTB4 levels were in the 

range of reported concentrations from carrageenan-induced arthritis in dogs [123] and 

clinical osteoarthritis in man [136]. However, the PGE2 levels were generally higher 

in this study than those reported in polycation-induced arthritis [118] and clinical joint 

diseases in man [143] and the horse [134]. PGEj levels from carrageenan models are 

apparently higher than those in other forms of inflammation. In vitro research on 

cells from humans with rheumatoid arthritis indicates that activated synovial lining 

cells produce PGEj whereas LTB4 originates mainly from synovial fluid neutrophils 

[142], although monocytes from patients with rheumatoid arthritis have also been 

shown to produce large amounts of LTB4 [139]. In the horse, chondrocytes and 

synovial cells secrete PGEj with very little contribution from PGE, [391]. Studies in 

other inflammatory exudates have also shown that the primary arachidonic acid 

products of neutrophils are leukotrienes [7,392].

There was considerable variability in the magnitude in the peak eicosanoid 

levels after carrageenan administration in these horses. Despite the variability among 

and within horses, there were significant treatment effects at 6 , 9 and 12 hours for
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PGE2, but not for LTB4. Phenylbutazone apparently inhibited cyclooxygenase activity 

longer than ketoprofen in this model of acute inflammation. Studies have indicated 

that phenylbutazone is more potent in producing cyclooxygenase inhibition and 

reducing carrageenan-induced edema than ketoprofen [8,64], In contrast, others have 

shown that ketoprofen is more potent in producing cyclooxygenase inhibition [290], 

and in carrageenan-induced inflammatory models [44,63] and pain models [44], In 

this study, the therapeutic dose of ketoprofen reduced PGE2 concentrations longer than 

the high dose. This lack of a dose-response effect with ketoprofen may in part be due 

to the small difference between the two doses chosen coupled with the large degree 

of variability associated with PGE2 concentrations. Unexpectedly, at 6 and 9 hours 

the 3.63 mg/kg dose of ketoprofen resulted in higher PGE2 concentrations than the 

therapeutic dose. Perhaps the high dose of ketoprofen decreases prostaglandin 

degradation thereby resulting in apparent potentiation of prostaglandin formation. 

Several NSAIDs inhibit the 15-hydroxy prostanoate dehydrogenase enzyme that 

oxidizes and inactivates PGE^ and PGF2o, at concentrations that are generally higher 

than for cyclooxygenase inhibition [393,394]. Perhaps the high dose, but not the 

therapeutic dose of ketoprofen has activity against this degradative enzyme in the joint 

thereby leading to a net increase in the concentration of PGEj in the synovial fluid.

There were no significant treatment effects on synovial fluid LTB4 

concentrations for ketoprofen or phenylbutazone. Previous studies have indicated that 

ketoprofen inhibits rabbit neutrophil [250,293] and human lung [292] lipoxygenase 

activity, while others have found no effect [290,293]. Lipoxygenase inhibition data
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varies considerably depending on the source of the enzyme and the species tested 

[293,295], Although not significant, most NSAIDs appeared to increase the LTB4 

concentrations as compared to saline at 3 hours. Phenylbutazone appeared to have the 

greatest potentiation followed by the high dose of ketoprofen. This effect has been 

reported previously for diclofenac, ketoprofen and aspirin in the guinea pig [293] and 

for indomethacin, ibuprofen and aspirin in man [392] and has been attributed to a 

diversion of arachidonic acid substrate after cyclooxygenase inhibition to the 

lipoxygenase pathway. The apparent of 5-lipoxygenase for arachidonic acid is 

comparable to that of cyclooxygenase. Since most cells with 5-lipoxygenase activity 

also contain cyclooxygenase, it is thought that the activated enzymes compete for 

arachidonic acid substrate in the same cell types [10].

Many horses were neutrophilic from 3 to 24 hours with a slight leukocytosis 

occurring at 12 hours. This effect most likely represented a mobilization of mature 

neutrophils from the marginal blood pool and the bone marrow maturation pool in 

response to the synovitis [395]. The reason for the effect of phenylbutazone on blood 

eosinophil and basophil numbers is unclear. However, the mean eosinophil and 

basophil numbers per for horses treated with phenylbutazone were within normal 

clinical limits. This effect is most likely artifactual as there are no reports of 

phenylbutazone increasing these white cells. On the contrary, toxic doses of 

phenylbutazone produce leukopenia in the horse [396,397].

Phenylbutazone was more effective than ketoprofen in alleviating many of the 

signs of pain and inflammation in this model of synovitis. These results are consistent
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to those obtained in models of carrageenan-induced subcutaneous inflammation where 

peak reduction in PGE^ exudate levels occurred at 6 hours [323]. High doses of 

phenylbutazone in the dog have been effective in both preventing and suppressing the 

inflammatory response from urate-induced joint inflammation [101]. Ketoprofen was 

effective in alleviating inflammation in this model, but did not result in inhibition of 

the leukotriene pathway as determined by the measurement of LTB4 in the synovial 

fluid.
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CHAPTER 5

PHARMACOKINETICS AND SYNOVIAL FLUID LEVELS OF 

KETOPROFEN IN NORMAL HORSES AND HORSES 

WITH ACUTE SYNOVITIS

A. Introduction

Ketoprofen or (±)-2(3-benzoylphenyl)propionic acid is a nonsteroidal anti

inflammatory drug (NSAID) of the propionic acid family that includes ibuprofen, 

naproxen, benoxaprofen, fenoprofen and carprofen. This agent has been used in 

human medicine in the treatment of arthritis and mild-to-moderate pain since its 

introduction in France in 1973. Ketoprofen, at an intravenous dose of 2.2 mg/kg, was 

approved by the United States Food and Drug Administration for alleviation of 

musculoskeletal pain and inflammation in the horse in 1990.

The plasma or serum pharmacokinetics of ketoprofen has been studied in 

humans [282,398], rabbits [287], rats [289], dogs [399], and horses [283,286]. 

Synovial fluid levels of ketoprofen have been measured in humans with various forms 

of arthritis [280,297,400,401]. Peak synovial fluid concentrations of total (plasma 

protein bound and free) ketoprofen in humans with arthritis are lower and occur later 

than do peak plasma concentrations [280]. However, the peak synovial fluid 

concentrations often exceed corresponding plasma levels after an equilibrium has been 

established.

151
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Water and small solutes, including most NSAIDs, cross the synovial membrane 

from plasma principally by diffusion through the intercellular, interstitial matrix of the 

synovium. This diffusion by small molecules is considered bi-directional [402]. 

Compounds that are lipid soluble may also cross the membrane through transcellular 

diffusion [402]. The extravascular pharmacokinetics of a particular drug depend on 

the agent’s molecular weight, lipid solubility, protein binding, plasma half-life and 

pKa. For example, ketoprofen (C16H140 3, molecular weight 254.29) has an octanol- 

buffer partition coefficient at pH 7.4 of approximately 1 with a pKa of 5.02 and a high 

percentage of plasma protein binding [399]. However, this pKa results in ionization 

of ketoprofen at a physiological pH. In contrast to ketoprofen, phenylbutazone 

(C19H20N2O2, molecular weight 308.37) has a similar pKa (4.8) and degree of protein 

binding, but is much more lipid soluble with an octanol-buffer partition coefficient of 

5.01 at a neutral pH and would be expected to cross biological membrane to a greater 

extent than ketoprofen [162].

Evidence indicates that synovial NSAID concentrations are higher in patients 

with joint inflammation than those in normal joints [403]. This is due to the increase 

in vascular permeability and blood flow, loss of endothelial integrity and hemorrhage 

that allows for the exudation of plasma proteins with the bound drug. Normally, 

only the free drug is able to diffuse freely between plasma and synovial fluid, but 

with inflammation, bound drug may enter into the synovial fluid [402]. In contrast 

to small molecules, plasma protein diffusion into the synovial fluid is a one-way 

transport mechanism [258]. Plasma protein concentrations in synovial fluid are
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normally low, but the permeability increases with joint inflammation [402,404], The 

increased protein concentration and drug receptor binding at the site of action may 

serve to increase the joint drug concentration of highly bound drugs [258,402],

The purpose of this study was to compare the pharmacokinetics of ketoprofen 

in healthy horses and those with experimentally-induced acute synovitis. More 

importantly, this study was designed to evaluate the concentration of ketoprofen at its 

site of action in animals with joint disease. Synovial fluid levels of ketoprofen in 

inflamed joints were compared to levels in normal joints in order to determine the 

effect of acute joint inflammation on the magnitude and duration of ketoprofen 

synovial fluid concentrations.

B. Materials and methods

1. Experimental animals

a. Normal horses

Three healthy geldings (2 American Quarter Horses and one Thoroughbred) 

and one Thoroughbred mare weighing from 406 to 554 kg and ranging from 5 to 12 

years of age were used. Horses were judged to be healthy and sound based on 

physical examination and lameness evaluation.

b. Horses with experimentally-induced synovitis

Four geldings (one American Quarter Horse and 3 Thoroughbreds) weighing 

from 437 to 509 kg and ranging from 8 to 12 years of age with carrageenan-induced 

synovitis of the left intercarpal joint were used. Prior to induction, horses were judged
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to be healthy and sound based on physical examination, lameness evaluation, synovial 

fluid analysis and radiographic examination of the left carpus.

All horses were vaccinated at least three weeks prior against eastern and 

western equine encephalomyelitis, influenza, tetanus (Equi-Flu EWT™, Coopers, 

Mundelein, IL) and rhinopneumonitis (Rhinomune™, SmithKline Beecham Animal 

Health, Exton, PA). The horses were dewormed with oxibendazole (Equipar™, 

Coopers, Mundelein, IL). Horses were housed in 10.9 x 12.5 feet stalls and were 

maintained on 5 pounds of a pelleted ration (Purina Horse Chow 100™, Purina Mills 

Inc., St. Louis, MO) containing: a minimum of 10% protein; 2% fat; a maximum of 

25 % fiber; and a vitamin/trace mineral supplement twice daily with mixed grass hay 

(11% protein, 1.4% fat, 24% fiber) and water provided ad libitum.

2. Drugs and reagents

a. Drug solution for administration

Ketoprofen (Ketofen™) was obtained commercially from Aveco Company, 

Inc., Fort Dodge, IA. Each ml of the sterile solution contained: 100 mg ketoprofen; 

L-arginine, 70 mg; citric acid to adjust pH to approximately 7; and benzyl alcohol, 

0.25 ml as a preservative.

b. Standard solutions

A stock solution of ketoprofen was prepared by dissolving 10 mg of the 

compound in 10 ml of methanol. The stock solution was serially diluted with 

methanol to produce working standard solutions of 100 /ig/ml, 10 /xg/ml, and 1 

(ig/ml. The working solution of fenoprofen was prepared by dissolving 10 mg of the
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compound in 10 ml of methanol. Ketoprofen and fenoprofen were obtained from 

Sigma Chemical Co., St. Louis, MO.

c. Solvents

Liquid chromatography grade solvents were obtained from commercial sources. 

Phosphate buffer (0.001M) for high performance liquid chromatography (HPLC) 

mobile phase was prepared by placing 68.027 p\ of o-phosphoric acid (44.6N) in 

triple distilled water sufficient to make 1 L total volume. The pH of this solution was 

adjusted to 7.4 with sodium hydroxide (2.157 ml of 1 N).

d. Water

Triple distilled, filtered water was prepared by passing through a Modulab™ 

Polisher I water purification system (Continental Water Systems Corp., San Antonio, 

TX).

3. Experimental protocol

a. Horse preparation

Each horse was shaved over the entire carpal region 24 hours prior to drug 

administration. Indwelling catheters (14 gauge, 5.7 cm) (Quick-Cath™, Baxter 

Healthcare Corp., Deerfield, IL) were aseptically placed bilaterally in the jugular 

veins of each horse before each session.

b. Blood collection

Ketoprofen (2.2 mg/kg) as Ketofen™ and detomidine (Dormosedan™, Norden 

Laboratories, Lincoln, NE) were administered via the left jugular catheter. The right 

jugular catheter was used for blood collection before drug administration and at 3, 5,
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10, 15, 20, 30, and 45 minutes and at 1, 1.5, 2, 3, 4, 5, 6 , 9, 12, and 24 hours after 

drug injection for determination of plasma drug concentrations. The patency of each 

catheter was maintained after each blood collection with 3 ml of 100 lU/ml of 

heparinized saline. Before blood was collected, 2-3 ml was discarded to remove any 

residual heparin from the catheter. Blood (14 ml) was collected with a 18 gauge, 1.5 

inch needle and a 20 ml syringe and then placed immediately into 7 ml evacuated 

glass tubes containing 10.5 mg of ethylenediamine tetraacetate K3 (EDTA) as an 

anticoagulant (Vacutainer, Becton Dickinson, Rutherford, NJ). Tubes were 

immediately centrifuged at 2,000 rpm for 15 minutes (Dynac, Becton Dickenson and 

Company, Parsippany, NJ). Plasma was transferred into 15 ml polypropylene 

centrifuge tubes (Sarstedt, Newton, NC) and stored at -20° C until analyzed. 

Previous studies have shown that freezing does not affect ketoprofen concentrations 

in biological matrices [280,405].

c. Synovial fluid collection from normal horses 

Horses received detomidine HC1 intravenously (10 /xg/kg for the first dose and 

5.0 /xg/kg for subsequent doses) before each arthrocentesis as a sedative to reduce the 

risk of iatrogenic joint hemorrhage and trauma. In addition, all horses were nose 

twitched during arthrocentesis. Before each arthrocentesis the entire carpal area was 

scrubbed with Hibiclens™ (Stuart Pharmaceuticals, Wilmington, DE) and alcohol at 

least three times with a final scrub directly over the site for arthrocentesis. Sterile 

needles (20 gauge, 1 inch), syringes (12 ml or 20 ml) and gloves were used during 

each arthrocentesis. Synovial fluid was collected from the intercarpal joint before and
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at 1, 3, 6 , 9, 12, and 24 hours after drug administration for determination of 

ketoprofen. Synovial fluid (approximately 3.5 ml) was obtained altematingly from 

the left and right intercarpal joints due to the paucity of synovial fluid in these normal 

joints. Synovial fluid was placed into 2 ml evacuated glass tubes containing 3 mg of 

EDTA as an anticoagulant (Vacutainer, Becton Dickinson, Rutherford, NJ). The fluid 

was immediately centrifuged at 4° C and 2,500 rpm for 15 minutes (Eppendorf 

5415C, Brinkman Instruments, Westbury, NJ). The supernatant was stored in 1.5 ml 

polypropylene micro-centrifuge tubes (Dot Scientific, Inc., Flint, MI) at 20° C until 

analyzed.

d. Synovial fluid collection from horses with experimental synovitis

Arthrocentesis was accomplished as above except that acute inflammation was 

induced in the left intercarpal joints of these horses by the injection of 0.3 ml of 1 % 

solution of sterile carrageenan at the same time as ketoprofen administration (time 0). 

In these horses synovial fluid was obtained only from the inflamed left intercarpal 

joint at the times designated above. At each time point, the maximum volume of 

synovial fluid was withdrawn in order to reduce the degree of discomfort in the horse 

caused by joint effusion. The amount of synovial fluid withdrawn ranged from 2.5 

to 15 ml. Synovial fluid was processed as above.

4. Ketoprofen determination

The concentrations of ketoprofen in plasma and synovial fluid were determined 

by high performance liquid chromatograph (HPLC) analysis of ethyl acetate extracts
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of acidified samples. Fenoprofen was added to the samples before extraction as an 

internal standard.

Plasma and synovial fluid calibrators were prepared by adding ketoprofen and 

fenoprofen standard solutions to drug-free equine plasma and synovial fluid. For 

plasma, concentrations of 0.1, 0.5, 1, 10, and 40 fig of ketoprofen/ml of plasma were 

prepared. Ketoprofen was added to synovial fluid to make concentrations of 1, 0.5,

0.1, 0.05, and 0.025 fig/ml. These calibrators were prepared and analyzed daily in 

duplicate with each set of unknown samples.

a. Extraction

For plasma samples, 25 fil of 1000 /xg/ml fenoprofen was added to 500 fi\ of 

sample to achieve a final concentration of 50 fig/ml. For synovial fluid samples, 5 

fil of 1000 fig/ml of fenoprofen was added to 500 fil of sample to achieve a final 

concentration of 10 fig/ml. Plasma or synovial fluid samples were acidified with 0.5 

ml 1 N HC1 and 2.0 ml of ethyl acetate was added. Samples were vortexed for 30 

seconds, then centrifuged at 2,000 rpm for 15 min (Dynac, Becton Dickenson and 

Company, Parsippany, NJ). The ethyl acetate extraction was repeated. The upper 

organic layers were transferred to a separate tube and evaporated to dryness without 

heat under a flow of nitrogen. Samples were reconstituted in 250 fil of mobile phase 

solvent mixture, vortexed and filtered through a 0.45 fim teflon syringe filter (Poretics 

Co., Livermore, CA) into to a 2.0 ml HPLC autosampler vial. The injection volume 

was 10 fil.
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b. Chromatography

All analyses were performed using a Hewlett Packard 1090 high performance 

liquid chromatograph equipped with a variable volume auto-injector and a photodiode 

array detector set at 256 nm (10 nm bandwidth) with a reference spectrum of 550 nm 

(100 nm bandwidth). Instrument control, data acquisition, and peak integration were 

accomplished with Hewlett-Packard HPLC ChemStation software (Waldbronn, 

Germany). A 100 x 4.6 mm reversed phase column packed with 3 fim octadecylsilyl 

derivatized silica particles (Spherosorb™ ODS-2, 80 A pore) equipped with 10 x 4 

mm guard column (5 f i m ,  300 A pore) from Keystone Scientific (Bellefonte, PA) 

maintained at ambient temperature was used for all analyses.

The mobile phase consisted of 0.001 M phosphate buffer (pH 7.4) and 

acetonitrile delivered at a ratio of 85:15 or 82.45:17.55. The mobile phase was 

filtered through a 0.45 fim membrane filter (FP Vericel™, Gel man Sciences, Inc., 

Ann Arbor, MI) and degassed with helium immediately before use. A 10 fi\ aliquot 

of synovial fluid or plasma extract was injected at a rate of 833.3 /d/minute for 

analysis. The analyte and internal standard were eluted at a flow rate of 1 ml/minute 

The total run time was 8.5 minutes.

c. Linearity o f response

Plasma and synovial fluid concentrations were calculated by determining the 

peak height ratio of ketoprofen to the internal standard, fenoprofen for each incurred 

sample and calibrator. Five point calibration curves for ketoprofen in plasma and 

synovial fluid were prepared by plotting the peak height ratios against concentration
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using data derived from the average of duplicate injections. The slope, intercept and 

correlation coefficients for each of the calibration curves were determined before each 

analytical session.

d. Recovery

Relative recovery of ketoprofen from synovial fluid and plasma was evaluated 

by comparison of analyte peak heights of 5 injections of non-extracted standard 

solutions to peak heights of 5 extracted fortified samples. Percent recovery was 

determined for the lowest and highest concentrations of ketoprofen tested in synovial 

fluid and plasma.

e. Intra-assay variability

The within run precision was determined by replicate injections of the same 

sample run under identical conditions during the same analytical session. This was 

determined for fortified samples of the lowest and highest concentrations of ketoprofen 

tested in synovial fluid and plasma. The intra-assay variation of each concentration 

in each matrix was defined as the coefficient of variation of triplicate injections of the 

same sample run in duplicate so that n =6  per concentration. The coefficient of 

variation of each concentration was calculated from the mean and standard deviation 

of the peak height ratios.

f . Inter-assay variability

The between day precision was determined from samples of the same 

concentration extracted and analyzed under identical conditions during different 

analytical sessions. This was determined for fortified samples of the lowest and
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highest concentrations of ketoprofen tested in synovial fluid and plasma. The inter

assay variability at each concentration in each matrix was defined as the coefficient 

of variation of 5 duplicate injections analyzed during 5 different analytical sessions. 

The overall inter-assay variation for each matrix was obtained from averaging the 

coefficient of variations from each concentration examined.

g. Plasma pharmacokinetic analysis 

The plasma ketoprofen concentration versus time data for each horse were 

analyzed by an automated curve-stripping procedure using the RSTRIP™ computer 

program (MicroMath Scientific Software, Salt Lake City, UT). This provided initial 

estimates of pharmacokinetic parameters and the best exponential disposition function 

to fit the data. These initial estimates were then used to generate a best fit by 

nonlinear least-squares regression analysis with equal weighting of the data using the 

MINSQ™ computer program (MicroMath Scientific Software, Salt Lake City, UT). 

Visual inspection of the fitted curves, examination of the plot of the residuals versus 

calculated concentration [406], and application of a modified Akaike’s information 

criterion [407] were used to determine the number of exponential terms required to 

describe the data. For the 2-compartment open model, the equation was:

Cp = A-e^1™' + B-e'BTimc 

where Cp is the plasma concentration, A = distribution phase intercept, a = 

distribution phase rate constant, B = elimination phase intercept, B = elimination 

phase rate constant. The MINSQ™ computer program calculated the following 

dependent variables: area under the plasma concentration versus time curve (calculated
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to infinity), AUC; the elimination rate from the central compartment, K̂ ,; the transfer 

rate from the first compartment to the second compartment, K12; the transfer rate from 

the second compartment to the first compartment, K21; the half-life of a , t,Aa; and the 

half-life of j8, tm . The following parameters were derived from standard kinetic 

formulas [408].

The total plasma clearance was calculated from:

CLx = Dose/ AUC 

where dose = dose of ketoprofen in fig/kg and AUC = A/a +  B/B.

The volume of the central compartment was calculated from the dose and the 

area under the curve:

Vc = Dose/AUC

The volume of distribution based on the area method was determined by the 

total clearance and elimination rate constant:

Vd(area) = CLj/B

The volume of distribution at steady state or the whole body estimate of the 

volume of distribution was calculated as follows:

Vd„ = Dose-AUMC/AUC2

The elimination half-life (tl/iB) was determined by the elimination rate constant:

t&e = ln(2)/B
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A noncompartmental method was used to determine the statistical moments 

[409]. The area under the first moment curve ( j Cp t-dt) was calculated from the 

intercepts and rate constants:

AUMC = A/a2 = B/B2 

The first statistical moment of the drug concentration time curve is the mean 

residence time (MRT) and is analogous to the half-life of compartmental analysis. 

This value represents the time for 63.2% of the dose to be eliminated and was 

calculated from the area under the curve and the area under the first moment curve 

[409]:

MRT = AUMC/AUC

h. Synovial fluid pharmacokinetic analysi 

The limited number of time-concentration data for synovial fluid in normal 

horses (3 points) and synovitis horses (4 points) did not allow for a calculation of a 

complete pharmacokinetic profile. However, the area under the curve and time- 

concentration data for each horse were calculated. The area under the time versus 

concentration curve (AUC) was determined for each horse by the Pharmacologic 

Calculation System computer program (Microcomputer Specialists, Philadelphia, PA) 

using the trapezoidal rule [410].

Plasma Statistical analysis 

The elimination half-life (t1/4B) was expressed as an arithmetic mean of four 

horses. In addition the half-life was expressed as the harmonic mean (Ht,A) based on 

the mean elimination rate constant. The harmonic is the more appropriate estimate
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of the half-life and always produces a lesser value than the arithmetic mean [411]. 

The harmonic mean is calculated as follows:

=  H / ( l / t iABji +  +  l/ti4B,n)

or

Htv4 =  ln(2)/B“

where B* = the mean elimination rate constant of four horses. The pseudo standard 

deviation (pSD) of the harmonic half-life was based on the jackknife variance and was 

estimated by the following:

PSD =V [(n-l)E (H r HtV2)2] 

where H; = the harmonic mean of n-1 values which is calculated n times deleting a 

different half-life value each time. Estimates of half-life, volume of distribution, 

AUC and Cp° (time 0 plasma concentration) are not considered to be normally 

distributed [412]. Therefore, all pharmacokinetic parameters were compared for 

normal horses and those with acute synovitis by the Mann-Whitney rank sum test 

[413] using SigmaStat (Jandel, Corp., San Rafael, CA). All results were considered 

significant when P < 0.05.

k. Synovial fluid statistical analysis 

Values for AUC from both groups of horses were compared by the Mann- 

Whitney rank sum test. Synovial fluid concentrations from both groups of horses 

were compared at each time using the Mann-Whitney rank sum test. Within each 

group, synovial fluid concentrations were compared to corresponding plasma



www.manaraa.com

165

concentrations with paired Student’s t tests [414] using SigmaStat (Jandel, Corp., San 

Rafael, CA). All results were considered significant when P < 0.05.

C. Results

1. Chromatography

The mobile phase composition reported by Satterwhite and Boudinot [405] of 

0.01 M phosphate buffer and acetonitrile (82.5:17.5) did not achieve adequate 

resolution of the analyte and the reported internal standard, naproxen when used with 

the 3 f i m  octadecylsilyl column. Several other internal standards were also tested 

using this system without success including, oxyphenbutazone, phenylbutazone and 

ibuprofen. Fenoprofen was determined to have adequate chromatography and a 

unique retention time as compared to the analyte when a mobile phase of 0.001 

phosphate buffer and acetonitrile was used with a ratio of 85:15 or 82.45:17.55. The 

latter mobile phase ratio was found to be optimal for some sessions using a newly 

purchased column. The limits of quantitation of ketoprofen in this system were 0.025 

f i g / ml in synovial fluid and 0.1 ^g/ml in plasma.

Chromatograms of blank plasma and synovial fluid are shown in Figures 17 

and 18. Chromatograms of plasma and synovial fluid from horses administered 

ketoprofen are shown in Figures 19 and 20. All chromatograms are expressed as 

milliabsorbance units (mAU) versus time. The retention time of ketoprofen in both 

fluids was 1.75 minutes. The retention time of fenoprofen varied slightly from 1.90 

to 2.20 minutes. As can be seen from the blank chromatograms in Figures 17 and 18,
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Figure 17: Liquid chromatogram of extracted plasma containing no drug.
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Figure 18: Liquid chromatogram of extracted synovial fluid containing no drug.
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Figure 19: Liquid chromatogram of extracted plasma from a horse administered ketoprofen. The calculated 
ketoprofen (KETO) concentration was 11.89 ^g/ml. The sample was fortified with fenoprofen (FENO) at 50 
jig/ml as an internal standard.
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Figure 20: Liquid chromatogram of extracted synovial fluid from a horse administered ketoprofen. The 
calculated ketoprofen (KETO) concentration was 0.53 /xg/ml. The sample was fortified with fenoprofen (FENO) 
(10 /ig/ml) as an internal standard.
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there were no interfering substances eluting near the retention times for ketoprofen or 

fenoprofen in plasma or synovial fluid. The ultraviolet (UV) absorbance spectra of 

ketoprofen from non-extracted standards and incurred samples are shown in Figures 

21 and 22. Comparison of the UV spectra of ketoprofen from standards and incurred 

samples indicates excellent peak purity. The UV absorbance spectrum of fenoprofen 

is shown in Figure 23. Thus, ketoprofen and fenoprofen were differentiated based on 

both the unique retention time and UV absorbance spectrum of each compound.

a. Linearity o f response

Calibration curves of ketoprofen fortified plasma and synovial fluid were 

obtained using the mean peak height ratio values of duplicate injections. These curves 

were linear over the range of concentrations used (0.1 to 40 /ig/ml for plasma, and 

0.025 to 1.0 /xg/ml for synovial fluid) for each analytical session with correlation 

coefficients (r) ranging from 0.9964 to 0.9989.

b. Recovery

The mean relative recoveries of ketoprofen as determined by comparison of 

peak heights of five injections of standard solutions to five injections of extracted 

fortified samples were 100.2% ± 10.0 and 92.1% + 6.5% for synovial fluid samples 

containing 0.025 /xg/ml and 1.0 ptg/ml, respectively, with an overall mean recovery 

of 96.2 %. Mean relative recoveries of ketoprofen from fortified plasma samples were 

109.4% ± 13.4% and 89.8% ± 12.5% for samples containing 0.1 /ig/ml and 40.0 

/ig/ml, respectively, with an overall mean of 99.6% (Table 16). The extraction
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Figure 21: UV absorbance spectrum of ketoprofen from a liquid chromatogram of a non-extracted standard 
solution.
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Figure 22: UV absorbance spectrum of ketoprofen from a liquid chromatogram of an extracted incurred plasma 
sample.
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Figure 23: UV absorbance spectrum of fenoprofen from a liquid chromatogram of an extracted plasma sample.
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Table 16: Recovery of ketoprofen as determined by the comparison of peak heights from 5 
standard solutions and extracted fortified samples. Percent recovery is reported ±  SD.

CONCENTRATION
(/tg/ml)

RECOVERY
(%)

CONCENTRATION
0tg/ml)

RECOVERY
(%)

0.025 100.2 (±  10.0) 0.10 109.4 (±  13.4)

1.000 92.1 (±  6.5) 40.0 89.8 (±  12.5)

OVERALL 96.1 OVERALL 99.6



www.manaraa.com

175

technique used showed excellent recoveries for synovial fluid and plasma and were 

similar to other methods using diethyl ether [405] and dichloromethane [283].

c. Intra-assay variability

The intra-assay variances for synovial fluid as expressed as the coefficient of 

variation ranged from 5.2% for the 1.0 ^g/ml concentration to 11.0% for the 0.025 

^g/ml level. The plasma values were 3.5% for the 0.1 /ig/ml concentration and 4.6% 

for samples containing 40.0 /tg/ml of ketoprofen (Table 17).

d. Inter-assay variability

The between session variability based on the coefficient of variation of five 

samples run during subsequent analytical sessions ranged from 8.0 % for fortified 

plasma samples containing 0.1 fig/ml of ketoprofen to 10.3% for fortified synovial 

fluid containing 0.025 fig/ml of ketoprofen (Table 17).

2. Plasma pharmacokinetics

Ketoprofen disposition in plasma for normal horses and those with acute 

synovitis was best described by a bi-exponential equation, except in one normal horse 

and one horse with acute synovitis which were better fitted to a mono-exponential or 

one-compartment model. These unusual animals were force-fitted to a two- 

compartment model which permitted comparison between horse groups. The bi

exponential equation, Cp = A-e'“'T,me +  B-e'BTime, was used to determine the 

pharmacokinetic parameters of all horses where Cp = plasma concentration, A = 

distribution phase intercept, a = distribution phase rate constant, B = elimination 

phase intercept, and B = elimination phase rate constant. The individual coefficients
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Table 17: Intra-assay variability as represented by the CV of 6 injections. Inter
assay variability as represented by the CV of 5 injections.

SYNOVIAL FLUID

CONCENTRATION
Oig/ml)

INTRA
ASSAY
(CV)

INTER
ASSAY
(CV)

0.025 11.0 14.2

1.000 5.1 9.2

OVERALL 8.1 11.7

PLASMA

0.1

40.0

OVERALL

3.5

4.6 

4.1

8.0

9.5

8.8
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of determination (correlation coefficient2 or r2) ranged from 0.96217 to 0.99753. This 

value is a measure of the fraction of the total variance accounted for by the model.

The mean total plasma ketoprofen concentration versus time curve for normal 

horses and horses with acute synovitis are shown in Figures 24 and 25 and the derived 

pharmacologic parameter values are outlined in Tables 18 and 19. The mean ± 

standard deviation (SD) plasma concentration of normal horses 3 minutes after dosing 

was 33.72 ±  0.43. The corresponding concentration in horses with acute synovitis 

was 23.61 + 1.96. The distribution phase intercept (A) of normal horses was 41.31 

+ 17.08. This value was significantly higher (P = 0.029) than the corresponding 

value in horses with acute synovitis, 24.65 ±  4.90. Both groups had a similar rapid 

distribution phase followed by slower elimination phase. At 4 hours post-dose plasma 

levels were 0.36 /ig/ml + 0.02 in normal horses and 0.16 /ig/ml ±  0.06 in horses 

with acute synovitis. Plasma ketoprofen concentrations were below the limit of 

quantitation by 5 hours. The harmonic plasma half-life (tV̂ B) + the pseudo standard 

deviation of the horses with acute synovitis was 0.55 hour + 0.21. This harmonic 

half-life was shorter (P = 0.029) than that of the normal horses, 0.88 hour ±  0.35. 

All other plasma pharmacokinetic parameters were not statistically different between 

horse groups.

3. Synovial fluid pharmacokinetics

Ketoprofen disposition in synovial fluid in normal horses was minimal with 

mean peak levels ±  SD of 0.39 /xg/ml + 0.03 occurring at one hour with levels 

falling to 0.08 /j.g/ml + 0.04 by 6 hours (Figure 26). Concentrations were below the
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Figure 24: Plasma disposition curves of intravenous ketoprofen (2.2 mg/kg) in 4 normal horses. Mean 
ketoprofen concentrations in /xg/ml are presented as + standard deviations (SD). Inset graph represents 
the natural log of plasma concentrations versus time.
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Figure 25: Plasma disposition curves of intravenous ketoprofen (2.2 mg/kg) in 4 horses with acute 
synovitis. Mean ketoprofen concentrations in ng/m\ are presented as + SD. Inset graph represents the 
natural log of plasma concentrations versus time.
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Table 18: Plasma pharmacokinetic parameters of intravenous ketoprofen (2.2 mg/kg) in normal horses and horses
with acute synovitis.

NORMAL HORSES SYNOVITIS HORSES

PARAMETER MEAN ST.DEV. RANGE MEAN ST.DEV. RANGE P

A (/tg/ml) 41.31 17.08 31.06-66.82 24.65 4.90 18.36-30.24 0.029*
a  (1/hr) 6.86 2.89 4.57-10.92 9.47 3.74 3.95-11.88 > 0.10

B (/tg/ml) 5.10 3.40 2.02-9.18 9.29 5.26 2.99-15.80 > 0.10

0  (1/hr) 0.79 0.31 0.42-1.10 1.27 0.49 0.67-1.83 > 0.10

Cp° (/tg/ml) 46.16 20.07 33.08-76.04 33.78 7.26 26.44-40.11 > 0.10

(1/hr) 3.73 1.05 2.84-5.25 3.37 0.56 2.62-3.83 > 0.10

K12 (1/hr) 2.44 1.45 1.33-4.47 3.67 1.93 0.99-5.58 > 0.10

Kn (1/hr) 1.47 0.78 0.67-2.28 3.69 2.03 1.01-4.51 > 0.10

P = Probability estimate 
’Statistically significant at P < 0.05
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Table 19: Plasma pharmacokinetic parameters of intravenous ketoprofen (2.2 mg/kg) in normal horses and horses
with acute synovitis.

NORMAL HORSES SYNOVITIS HORSES

PARAMETER MEAN ST.DEV. RANGE MEAN ST.DEV. RANGE P

t%«* (hr) 0.11 0.04 0.06-0.15 0.09 0.06 0.05-0.17 > 0.10

Up (hr) 1.02 0.47 0.62-1.65 0.63 0.29 0.37-1.03 > 0.10
0 .88" 0.35b 0.55" 0 .21b 0.029"*

(hr) 0.20 0.05 0.13-0.24 0.23 0.04 0.18-0.26 > 0.10

MRT (hr) 0.76 0.25 0.56-1.11 0.62 0.13 0.57-0.75 > 0.10

AUC„ (/tg®hr/ml) 12.06 1.64 10.75-14.46 10.10 1.00 8.70-10.94 0.057

AUMC. (Kg'hrVml) 9.07 2.64 7.49-12.99 6.25 1.63 4.87-8.26 > 0.10

CLj (ml/hr®kg) 184.72 22.70 152.08-204.48 219.55 23.25 201.02-252.68 0.057

Vc (ml/kg) 52.67 16.50 28.93-66.48 66.55 12.40 54.83-77.80 > 0.10

Vd(area) (ml/kg) 276.30 139.16 138.20-319.16 195.27 77.46 112.51-299.04 > 0.10

Vds, (ml/kg) 142.30 52.53 85.63-211.74 134.79 27.21 94.24-151.74 > 0.10

P = Probability estimate 
"Harmonic mean 
bPsuedo Standard Deviation 
’Statistically significant at P < 0.05
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Figure 26: Mean plasma and synovial fluid ketoprofen concentrations in jig/ml (+ SD) following 
intravenous ketoprofen (2.2 mg/kg) in 4 normal horses. Significantly different synovial fluid and plasma 
concentrations are indicated by (*).
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limit of quantitation in all normal horses by 9 hours. Synovial fluid ketoprofen 

concentrations at one hour were below (P = 0.015) corresponding plasma levels. 

Synovial fluid levels at 3 hours were not different from the corresponding plasma 

concentrations.

In contrast, synovial fluid disposition of ketoprofen in horses with acute 

synovitis was extensive with peak concentrations (2.53 /tg/ml + 0.39) occurring at 

one hour with levels falling to 0.06 /tg/ml +  0.02 by 9 hours. Concentrations were 

below the limit of quantitation by 12 hours. Although not significant, synovial fluid 

levels at 3 hours appeared greater than the corresponding plasma concentrations (P = 

0.09). In contrast to the normal horses, synovial fluid concentrations at one hour 

were not statistically different from one hour plasma levels (Figure 27). The average 

AUC for normal horses (1.37 /tg-hr/ml ±  0.38) was less (P = 0.029) than that of 

horses with acute synovitis (6.24 /tg-hr/ml + 2.41). At one hour post-dose, synovial 

fluid levels of ketoprofen in horses with acute synovitis were 6.5 times greater (P =

0.017) than normal horses. There was no difference in synovial fluid concentrations 

between the two groups at 3 or 6 hours.

D. Discussion

The harmonic means of plasma elimination half-lives of ketoprofen in both 

groups of horses were between 0.5 and 1 hour. This was expected based on the 

polarity of ketoprofen, as most polar compounds are rapidly excreted. The plasma 

half-life is proportional to the volume of distribution and inversely proportion to total
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Figure 27: Mean plasma and synovial fluid ketoprofen concentrations in ng/ml (+ SD) following 
intravenous ketoprofen in 4 horses with acute synovitis.
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clearance. The three volumes of distribution for both groups were less than or 

approximately equal to the extracellular volume (200 ml/kg), which would also be 

expected for a polar drug. The steady state volume of distribution is largely 

dependent on the intravascular albumin binding which for most NSAIDs results in 

limited distribution volumes [415].

The mean harmonic plasma half-life of normal horses (0.88 hours +  0.35) 

was significantly higher than that of horses with acute synovitis (0.55 hours +  0.21). 

This may be due to the increased penetration of ketoprofen into the inflamed joint, 

particularly from 1 to 3 hours post-dose as compared to the normal joints. In 

addition, the inflamed joints of these horses may have acted as a sequestered site of 

elimination, as the synovial fluid withdrawn from horses with acute synovitis ranged 

from 2.5 to 15 ml as compared to approximately 3.5 ml in normal horses. However, 

this cannot be confirmed as elimination data from concurrent urinary and fecal 

ketoprofen levels were not obtained in this study. To date, there are two published 

studies on the plasma kinetics of ketoprofen in the horse. In the study by Sams et 

ah, 1993, the reported harmonic mean of the half-life after one dose of 2.2 mg/kg of 

intravenous ketoprofen was 1.6 hours with a range of 1.18 to 2.65 hours. After five 

daily intravenous doses the harmonic mean of the half-life was 1.3 hours with a range 

of 0.76 to 1.86 hours [283]. The half-life in normal horses in the present study 

ranged from 0.62 to 1.65 hours. Several differences in study design and 

pharmacokinetic analysis are evident in these two studies. There may be a breed 

difference in the pharmacokinetics of ketoprofen as most of the horses in the previous
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study were standardbreds weighing from 465 to 660 kg whereas most horses in this 

study were Thoroughbreds weighing from 406 to 554 kg. The ketoprofen disposition 

was described as a tri-exponential equation in the previous study whereas the data in 

this study were best described by a bi-exponential equation. In addition, blood was 

sampled in this study more often than in the Sams study, particularly during the early 

stages (17 times versus 13). Further, all three volumes of distribution and the total 

clearance values were lower in the present study as compared to data collected by 

Sams. Again, these differences may be accounted for in part by the larger horses 

used in the Sams study as these parameters are known to change in proportion to body 

weight [416].

The distribution phase intercept (A) of normal horses (41.31 /ig/ml + 17.08) 

was significantly greater than that of horses with acute synovitis (24.65 /xg/ml ± 

4.90). The significance of this effect is unknown. However, the other 

pharmacokinetic values were not different between groups with the exception of the 

harmonic half-life. This may be due to the effect of an outlier in the normal horse 

group with a particularly high distribution phase intercept value (66.82 /xg/ml).

Ketoprofen is a chiral compound with the center of asymmetry at C2. The 

commercial preparation is a racemic mixture of the R and S enantiomers. Upon 

administration many species show conversion of the biologically inactive R enantiomer 

to the active S enantiomer [417,418]. In humans, the there is an approximately 10% 

inversion of the R enantiomer to the S after oral administration with little 

stereoselectivity in the pharmacokinetics of these enantiomers. Therefore,
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nonstereospecific assays may be used to explain the pharmacokinetics of the individual 

enantiomers in man [284]. In a recent study by Jaussaud et ah, the plasma 

pharmacokinetics of ketoprofen enantiomers in the horse were evaluated after 

administration of the racemate by means of a stereoselective HPLC technique [286]. 

The plasma disposition curves were fitted to a bi-exponential equation. In contrast to 

humans, the ratio of the S to R enantiomer increased over time and attained a 70:30 

ratio at 50 minutes in the horse. The elimination half-lives of the enantiomers were 

not significantly different statistically but the clearance rate and initial concentration 

of the S enantiomer were lower than that of the R enantiomer. The total ketoprofen 

disposition curve closely paralleled the S enantiomer curve. Further, these authors 

noted a short elimination half-life (0.29 to 0.47 hours) as compared to the present 

study, which may be accounted for by their relatively short sampling interval of 90 

minutes.

Synovial fluid ketoprofen levels in normal horses were lower than plasma 

levels at one hour, but the drug reached an equilibrium between the joint and systemic 

circulation by 3 hours as synovial fluid levels approximated plasma concentrations at 

this time. In contrast, ketoprofen synovial fluid and ketoprofen levels in horses with 

acute synovitis reached equilibrium at one hour post-administration. In these horses 

with acute synovitis, synovial fluid concentrations at 3 hours tended to be higher than 

the corresponding plasma levels. In humans with arthritis this effect is common as 

synovial levels often exceed plasma levels after the equilibrium time [280]. This 

results from the relative sequestration of the drug in the synovial fluid with the lack
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of significant elimination occurring from the joint [402], In horses with acute 

synovitis the amount and persistence of ketoprofen in synovial fluid was greater than 

in normal horses. This was based on the significantly larger AUC, higher 

concentration at one hour and longer duration of synovial fluid ketoprofen quantitation 

for the horses with joint disease.

The effect of increased penetration of an NSAID into inflamed joints versus 

normal ones has been reported in several species. In humans, NSAID joint levels 

were higher in patients with synovial inflammation than normal non-inflamed joints. 

NSAIDs reached levels in inflamed chicken joints that were three times higher than 

in control joints. The inflamed joint levels approximated the corresponding plasma 

levels at 2 hours post-dose [265].

Distribution of a drug to the peripheral tissues depends on the physicochemical 

properties of the drug, the concentration of the drug in the plasma and tissue, the 

blood flow to the tissue, percentage of plasma protein binding and the affinity of the 

drug for the particular tissue [399,416]. Only free (unbound to plasma proteins) drug 

is available to penetrate the endothelium and enter the synovial fluid. However, in 

cases of synovitis, the damaged endothelial barrier allows transudation of plasma 

proteins along with frank hemorrhage into the joint space leading to the accumulation 

of albumin bound drug in the synovial fluid. NSAIDs bound to albumin are thought 

to be released by the degradation of albumin by lysosomal enzymes in sites of 

inflammation [257]. This one way flow of albumin serves to increase the tissue 

concentration of the drug [258]. Also the lowered pH of the inflamed environment
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serves to keep these planar, anionic molecules unionized and thus increase membrane 

permeability [247]. Ion trapping is postulated to occur intracellularly as the 

environment inside the cell is relatively alkaline compared to the acidic inflamed tissue 

[260,261,419].

The effects of protein binding on pharmacokinetics are greater for drugs that 

are highly bound to plasma proteins and are bound in a concentration dependent 

manner. For these drugs, small changes in binding often result in marked alterations 

in drug disposition [420]. In the horse, ketoprofen is greater than 90.0% bound to 

plasma proteins and this binding is constant over the range of therapeutic drug levels 

[283]. Plasma and synovial fluid protein binding was not determined in the present 

study. However, due to the reported linear protein binding in the horse, these data 

obtained from total drug analytical methods were used as an estimate of free drug 

kinetics. In addition, in humans there does not appear to be any difference in the 

degree of protein binding between plasma and synovial fluid for ketoprofen [280].

Certain drugs have a high affinity for tissues and undergo sequestration or 

depot formation. These drugs may reversibly or covalently bind to subcellular 

organelles, nucleic acids or cellular proteins and lipids. In cases of covalent binding 

the drug release is dependent on the cell life span [416]. The R-enantiomer of 

profens acts as a substitute for endogenous fatty acids and forms hybrid 

triacylglycerols. The drug may then be bound to lipid membranes for extended 

periods of time [236,417]. Data from rat studies based on unbound drug disposition 

suggest that ketoprofen has dose-dependent binding to tissue components [415]. This
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tissue binding may account for the low reported urine recovery of ketoprofen (57.2%) 

in horses [283].
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CHAPTER 6

EFFECT OF KETOPROFEN AND PHENYLBUTAZONE ON CHRONIC 

PAIN AND DIGITAL VEIN EICOSANOID LEVELS 

IN LAMINITIC HORSES

A. Introduction

Laminitis has been cited as one of the major causes of chronic hoof pain in the 

horse [198]. Laminitis is classified as chronic after 48 hours of continual pain from 

a laminitic episode or when ventral deviation or rotation of the distal phalanx occurs 

[200]. It is associated with debilitation, hypertension, lameness and hoof pain which 

may last for the life of the animal. The complex syndrome of equine laminitis has 

multiple etiologies with a complex and poorly understood pathophysiology [199]. The 

pathology within the foot is a manifestation of a systemic metabolic disorder that 

affects the cardiovascular, endocrine and renal systems.

This disease is no longer defined as inflammation of the laminae of the foot, 

but is more precisely defined as a peripheral vascular disease [200] characterized by 

ischemic necrosis of the epidermal laminae, microvascular thrombosis, epithelial 

hyperplasia, and hemorrhage [220,224-226]. It has been hypothesized that the laminar 

ischemia develops acutely due to decreased capillary perfusion from opening of 

arteriovenous shunts and vasoconstriction [220].

Bacterial endotoxin has been implicated as an inciting cause in laminitis. Many 

horses with endotoxemia develop laminitis [220] and horses with carbohydrate

191
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overload-induced laminitis have increased plasma endotoxin levels and lameness [221]. 

Endotoxemia is associated with increased plasma levels of leukotriene B4 (LTB4) [222], 

prostaglandin Ej (PGEj) as well as other eicosanoids. The administration of 

nonsteroidal anti-inflammatory drugs (NSAIDs) prevents many of the effects of 

experimentally induced endotoxemia [223]. Eicosanoids have been implicated as 

mediators in laminitis due to the powerful vaso- and venoconstriction produced by 

PGF^ and thromboxane [217] along with the well known hyperalgesic effects ofPGEj 

[157,158] and LTB4 [166]. However, the association between endotoxin-induced 

eicosanoid production and the development of laminitis remains a theory due to the 

inability to produce laminitis following endotoxin administration. Further, 

concentrations of eicosanoids have not been measured in horses with acute or chronic 

laminitis [220].

NSAIDs are commonly administered to reduce the pain and suffering 

associated with laminitis and allow the animal to more comfortably stand and 

ambulate, thereby promoting blood flow to the foot and reducing the adverse effects 

of long term recumbency. According to Hood [199], horses that are treated with 

analgesics early in the course of the disease have a lower incidence of rotation of the 

distal phalanx than those treated later. NSAIDs are thought to be particular useful in 

treating the coagulopathy within the foot because of their inhibitory effects on 

eicosanoid formation and platelet function [199,234]. Previously, phenylbutazone (4.4 

mg/kg) has been regarded as the single most important therapeutic agent in treating
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laminitis [231,233]. The effects of the recently approved NSAID, ketoprofen have 

not been evaluated in horses with laminitis.

The purpose of this study was to determine if horses with chronic laminitis 

have increased digital vein levels of PGE2 and LTB4 as compared to normal horses. 

An increase in the concentration of eicosanoids in the venous drainage of the foot 

would lend further evidence that these metabolites play a role in mediating the pain 

and pathology within the foot. The digital vein was chosen as a sampling site due to 

the difficulty in obtaining laminar tissue for eicosanoid level determination in live 

horses. Horses were evaluated both at rest and after a brief exercise period in order 

to determine if eicosanoids are released into the circulation after mild concussion to 

the laminitic foot.

Provided that there were higher eicosanoid concentrations in laminitic versus 

normal horses, the severity of hoof pain in these laminitic animals was to be 

correlated with the eicosanoid concentrations. These horses were then to receive 

ketoprofen and phenylbutazone in order to determine the magnitude and time course 

of the eicosanoid inhibitory effects of these NSAIDs in animals with chronic laminitis. 

Further, this study objectively quantitated and compared the analgesic effects of 

phenylbutazone and the newly approved NSAID, ketoprofen in horses with chronic 

hoof pain by means of an electronic hoof tester. The approved therapeutic doses of 

ketoprofen (2.2 mg/kg) and phenylbutazone (4.4 mg/kg) were used. In addition, the 

phenylbutazone molar equivalent dose of ketoprofen (3.63 mg/kg) was tested in the 

laminitic animals in order to compare the potency of ketoprofen and phenylbutazone.
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B. Materials and methods

1. Experimental animals

a. Normal horses

Six healthy Thoroughbred mares ranging from 7 to 18 years of age were used 

to determine digital vein PGEj and LTB4 concentrations. Horses were judged to be 

healthy and sound based on physical examination and lameness evaluation.

b. Horses with chronic laminitis

Six horses (4 geldings, 2 mares; 4 American Quarter Horses, 1 Thoroughbred, 

and 1 Morgan) diagnosed with chronic laminitis ranging from 3 to 22 years of age 

were used for the collection of digital venous blood for determination of PGEj and 

LTB4 concentrations. Seven horses with chronic laminitis (4 mares, 3 geldings; 5 

Quarter Horses, 1 Thoroughbred and 1 Morgan) ranging from 3 to 18 years of age 

were used in determining the analgesic effects of ketoprofen and phenylbutazone. The 

diagnosis was based on: 1) degree of lameness as evaluated at a walk, trot and while 

turning on a concrete surface; 2) hoof abnormalities associated with chronic laminitis 

such as diverging hoof growth patterns with wider growth rings at the heel, subsolar 

or mural abscesses, a convex shaped sole, and the presence of a ’seedy toe’ or an 

abnormally large white line [200]; 3) radiographic evidence of laminitis such as 

ventral deviation or rotation of the third phalanx as determined by Stick’s method 

[228] (mean rotation + standard error, 13.75° ±  2.25), and osteolysis with 

demineralization of the distodorsal aspect of the third phalanx [234]; 4) response to
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the hoof tester, particularly over the sole midway between the apex of the frog and 

the toe; and 5) clinical history of a laminitic episode [231].

All horses were vaccinated at least three weeks prior against eastern and 

western equine encephalomyelitis, influenza, tetanus (Equi-Flu EWT™, Coopers, 

Mundelein, IL) and rhinopneumonitis (Rhinomune™, SmithKline Beecham Animal 

Health, Exton, PA). The horses were dewormed with oxibendazole (Equipar™, 

Coopers, Mundelein, IL). Horses were housed in 10.9 x 12.5 feet stalls and were 

maintained on 5 pounds of a pelleted ration (Purina Horse Chow 100™, Purina Mills 

Inc., St. Louis, MO) containing: a minimum of 10% protein; 2% fat; a maximum of 

25 % fiber; and a vitamin/trace mineral supplement twice daily with mixed grass hay 

(11% protein, 1.4% fat, 24% fiber) and water provided ad libitum.

2. Drugs and reagents

a. Drug solutions for administration 

Ketoprofen (Ketofen™) was obtained commercially from Aveco Company, 

Inc., Fort Dodge, IA. Each ml of the sterile solution contained: 100 mg ketoprofen; 

L-arginine, 70 mg; citric acid to adjust pH to approximately 7; and benzyl alcohol,

0.25 ml as a preservative. Phenylbutazone (Butazolidin™) was obtained commercially 

from Coopers Animal Health, Inc., Kansas City, KS. Each ml of the sterile solution 

contained: phenylbutazone, 200 mg; sodium hydroxide to adjust pH to between 9.5 

and 10.0; and benzyl alcohol, 10.45 mg as a preservative.
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3. Experimental protocol

a. Collection o f blood from digital veins

Blood was collected from 6 normal horses and 6 horses with chronic laminitis 

before and after trotting for 5 minutes on a concrete surface. The lateral region of 

the metacarpophalangeal joint of each normal and laminitic horse was shaved and 

scrubbed with a povidone-iodine preparation and alcohol before each venipuncture. 

Horses were restrained in a stanchion and nose twitched during venipuncture. Blood 

was collected from the digital vein at the level of the metacarpophalangeal joint with 

a 20 gauge, 1.0 inch needle. One to 2 ml of blood were discarded before collection 

of 10 ml into chilled evacuated siliconized glass tubes (Vacutainer, Becton Dickinson, 

Rutherford, NJ) containing 3.3 /tg/ml of BW755C (Wellcome Research Laboratories, 

Beckenham, Kent, England) as an inhibitor of ex vivo eicosanoid synthesis and 10 

mg/ml of the anticoagulant, disodium ethylenediamine tetraacetate (EDTA) purchased 

from Sigma Chemical Company, St. Louis, MO. Tubes were immediately centrifuged 

at 2,000 rpm for 15 minutes at 4°C (Beckman J21-B, Palo Alto, CA). The platelet 

poor plasma was transferred into 15 ml polypropylene centrifuge tubes (Sarstedt, 

Newton, NC) and stored at -20°C until analyzed.

b. Quantitation o f nociceptive thresholds in horses with chronic

laminitis

Ketoprofen (2.2 mg/kg and 3.63 mg/kg), phenylbutazone (4.4 mg/kg) and 

saline as a control were administered via the left jugular vein to 7 horses with chronic 

laminitis. The following methods were used to evaluate analgesia before
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administration of NSAIDs (baseline) and at 3, 6 and 24 hours post-treatment. 

Nociceptive or pain thresholds were determined in the test animals using a calibrated 

electronic hoof tester according to the method of Kamerling, et al., [421-423]. This 

device is a standard hoof tester equipped with a load cell welded to the tip of one jaw. 

The tension/compression load cell (Sensotec Model 31, Columbus, OH) had 10 V 

excitation, 2 mV/V output and a load capacity of 250 pounds. The calculated full 

scale accuracy was 0.15% with 0.15% linearity and hysteresis.

The hoof tester was manually applied to the solar surface of each forefoot in 

the traditional fashion [377]. Gradually increasing force over 2 seconds was applied 

at 16 separate loci on the solar and posterior surfaces of each forefoot (Figure 28). 

The force in Newtons required to produce a hoof withdrawal response by the 

laminitic horse was designated the hoof compression threshold (HCT). A ’response’ 

to hoof compression was considered painful when the hoof was withdrawn from the 

examiner’s hand or a contraction of the antebrachial musculature was noted by the 

examiner and an independent observer. The examiner terminated hoof compression 

at the initiation of the withdrawal response to avoid tissue damage. Loci that did not 

result in hoof withdrawal or muscle contraction by the end of the 2 second 

compression were deemed ’non-responsive’. The peak analog output (mV) of the hoof 

tester transducer was converted to Newtons and recorded for each locus by a computer 

(Commodore 64, England) equipped with customized software designed to test 

nociceptive thresholds.
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Figure 28: Diagram showing the position of the 16 loci tested on the solar surface of the left and right forefeet 
of the laminitic horses. Locus 16 is tested by applying the hoof tester to the medial and lateral heel bulbs.
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During baseline hoof testing sessions, the computer recorded the peak force 

applied to each locus and an independent observer entered (into the computer) whether 

the locus was ’responsive’ or ’non-responsive’. All loci were tested again at 3, 6 and 

24 hours after drug (or saline) administration. However, in the responsive loci, HCTs 

were elicited using a compression cutoff of 50% above baseline. This was calculated 

by the computer for each baseline locus which was ’responsive’ to hoof compression. 

The computer was equipped with an audible bell that signaled when 50% above 

baseline HCT had been reached so that the examiner could terminate compression. 

Therefore, post-treatment compression in the ’responsive’ loci was terminated either 

when a withdrawal response was initiated by the horse or the cutoff value was 

reached. ’Non-responsive’ loci received approximately the same pressure on post

treatment sessions as baseline, unless the loci became responsive in a post-treatment 

session. In that case compression was terminated when a withdrawal response was 

initiated.

The number of responsive (pain sensitive) loci on each foot was recorded 

during each hoof test session and expressed as a percentage of the total number of loci 

tested per horse. A subjective assessment of the hoof withdrawal response following 

hoof compression was made by the examiner. A subjective grade of 0 to 4 was used 

to indicate the weakest to strongest response as follows:

Grade 0: No response to hoof compression.

Grade 1: The horse contracted the antebrachial musculature with mild

extension of the shoulder, but the foot was not moved appreciably.



www.manaraa.com

200

Grade 2: The horse extended the shoulder and briefly attempted to withdraw 

the foot from the examiners grasp.

Grade 3: Moderate excursion of the limb and foot occurred, but the foot was 

not removed from the examiners grasp.

Grade 4: The horse quickly and forcefully withdrew the limb and attempted 

to place the foot on the ground.

c. Evaluation o f lameness in laminitic horses 

Lameness was assessed {lameness score) immediately before each hoof test 

session according to a modified Obel scale [200] as follows:

Grade 1: The horse exhibited a normal gait at a walk. The trot showed a 

shortened stride with an audible cadence abnormality, but showed even head 

and neck lifting for each foot.

Grade 2: The walk was stilted, but showed no abnormal head or neck lifting. 

The trot showed obvious lameness with uneven head and neck lifting. A 

forefoot could be lifted off the ground easily.

Grade 3: The lameness was obvious at a walk and trot. The horse resisted 

attempts to have a forefoot lifted and was reluctant to move.

Grade 4: The horse experienced difficulty bearing weight at rest or was very 

reluctant to move.

Preliminary studies indicated that this scale was not sensitive to subtle changes in 

lameness that occur over time in laminitic horses e.g., head and neck lifting becoming 

more/less pronounced. Further, numerical rating scales consisting of only 4 lameness
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grades are known to be less sensitive compared to other grading schemes [424]. 

Consequently, the above enumerated scale was expanded to include 3 divisions per 

grade by adding a 4- or - to each lameness grade to indicate the degree of severity 

associated with the score. Therefore, this modified lameness scale ranged from 0 

(sound) to 12 (non-weight bearing).

4. Eicosanoid determination

a. Extraction

Plasma obtained from digital venous blood was extracted using a liquid/liquid 

extraction technique prior to determination of PGE2 and LTB4 by enzyme-linked 

immunosorbent assay (ELISA) [333]. Four ml were extracted for both the LTB4 and 

PGE2 assays. All samples were processed in duplicate. Plasma was acidified and 

then three volumes of ethyl acetate were added to extract the eicosanoids. After 

vortexing, centrifugation and separation of aqueous and organic layers, the ethyl 

acetate was evaporated under nitrogen. Samples were then dissolved in phosphate 

buffer just prior to the ELISA procedure. For a more complete description of the 

extraction procedure and recovery information refer to Chapter 3.

b. ELISA

Quantitation of plasma eicosanoids was achieved using commercially available 

PGE2 and LTB4 ELISA kits (Advanced Magnetics, Cambridge, MA) [425]. These 

assays were based on the principle of a competitive ELISA where PGEj or LTB4 in 

the sample competed with fixed amounts of alkaline phosphate labelled PGE2 or LTB4 

for binding to the specific rabbit antibody bound to the microtiter well. Results were
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determined by means of a Dynatech MR5000 ELISA micro-titer plate reader 

(Dynatech Laboratories, Alexandria, VA). Absorbance (read at 410 nm) was 

correlated with concentration by means of a standard curve ranging from 10 to 5000 

pg/ml. Quantitation of unknown samples was achieved by averaging the absorbance 

of sample duplicates and calculation of the concentration from the standard curve. All 

sample concentrations were then corrected for extraction efficiency. For a more 

complete description of the ELISA procedure see Chapter 3.

5. Statistical design and data analysis

a. Eicosanoid concentrations

PGE2 and LTB4 plasma concentration data were analyzed using a univariate 

analysis of variance for a split-plot design [389] where group (normal or laminitic) 

constituted the main plot and status (resting digital vein or post-exercise digital vein) 

was the subplot [386,387]. When indicated, multiple comparisons between groups or 

status categories were performed using a Tukey’s w Procedure [388]. Differences 

between groups or status categories were considered significant when P < 0.05.

b. Nociceptive thresholds and lameness grade

Each laminitic test subject received ketoprofen (2.2 mg/kg and 3.63 mg/kg), 

phenylbutazone (4.4 mg/kg) and saline intravenously according to a Latin square 

design [385]. Horses received one treatment per week for four weeks. The study was 

performed in a double-blind fashion as neither the person performing the analgesic 

tests nor the injector were aware of the treatment.
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To minimize variance in pain thresholds over experimental days, all data were 

expressed as percent change from baseline for each horse at each post-treatment time 

within a given session. In addition, HCT (for responsive loci) and subjective grade 

of hoof withdrawal reaction data were expressed as an average over all baseline 

responsive loci for each horse at the post-treatment times. Data were analyzed using 

one-way analysis of variance (ANOVA) for repeated measures [386,387]. When 

indicated by ANOVA, multiple comparisons were performed using a Tukey’s w 

Procedure [388]. Differences between treatments at each time were considered 

significant when P < 0.05.

C. Results

1. Digital vein eicosanoid concentrations

Mean digital vein PGE2 and LTB4 concentrations are shown in Figure 29. 

Within each group (normal and laminitic), there were no differences in resting and 

post-exercise PGEz digital vein concentrations. Between groups, there were no 

differences in digital vein concentrations of PGEj. The mean PGE  ̂ digital vein 

concentration for the two groups was 187.18 pg/ml. For the LTB4 digital vein 

concentrations, there were no differences in resting and post-exercise levels within 

groups (normal and laminitic). As with PGEj, there were no differences in digital 

vein concentrations of LTB4 between groups. The mean LTB4 digital vein 

concentration for the two groups was 74.71 pg/ml.
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2. Nociceptive thresholds and lameness grade

The effect of NSAIDs and saline on HCTs in horses with chronic laminitis is 

shown in Figure 30. Ketoprofen (3.63 mg/kg) significantly increased the HCT as 

compared to saline at 3 and 6 hours post-treatment. At 3 and 6 hours after treatment, 

the horses administered this dose of ketoprofen tolerated an average increase in 

compressive force (as compared to baseline) of 19.74% and 23.35%, respectively. 

Even though there were significant effects as compared to saline, there were no 

differences between NSAIDs at 3 or 6 hours.

In order to determine the degree of variation in compression applied to a non- 

responsive locus over the course of time, the coefficient of variation (CV) of non- 

responsive loci HCT’s elicited during the experimental day was determined. This 

value was obtained for each of 4 non-responsive loci in 4 horses by obtaining the 

mean and standard deviation of HCTs elicited at hoof test sessions before treatment 

and at 3, 6 and 24 hours after treatment. An overall CV was calculated by averaging 

all individual CVs across horses. Non-responsive locus CVs for an experimental day 

ranged from 1.18% to 9.50%. The overall average CV for a total of 16 loci in 4 

horses was 3.81% with a standard deviation of 2.30.

The percentage of responsive loci per horse was unaffected by any treatment 

at 3 hours after drug dosing (Figure 31). However, at 6 hours all NSAIDs produced 

a lower percentage of responsive loci as compared to the saline control (29.49%). By 

24 hours, ketoprofen at 3.63 mg/kg (-3.87%), and phenylbutazone (-2.50%) continued 

to produce a significantly lower percentage of responsive loci as compared to saline
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Figure 30: Effect of NSAIDs and saline on mean hoof compression thresholds (+ SEM) in 7 laminitic 
horses. Dissimilar superscripts indicate statistically significant differences in treatments at P < 0.05.
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(30.48%), with apparent recovery in the horses treated with 2.2 mg/kg of ketoprofen 

(7.19%). There were no differences among NSAIDs at 6 or 24 hours. The number 

of responsive loci in horses administered saline increased over time while there was 

very little change in horses administered NSAIDs.

The 3.63 mg/kg dose of ketoprofen (-8.25%) reduced the subjective grade of 

hoof withdrawal response at 3 hours when compared to saline (9.89%). All NSAIDs 

reduced this grade at 6 hours (Figure 32). By 24 hours, only the 3.63 mg/kg dose of 

ketoprofen (-9.63%) had reduced the grade of withdrawal response as compared to 

saline (11.64%). There were no differences among NSAIDs at any of the times 

tested.

At 3 hours post-treatment, there were no significant effects on the lameness 

grade (Figure 33). By 6 hours, only the 3.63 mg/kg dose of ketoprofen (-21.43%) 

reduced the lameness grade when compared to saline (14.29%). There were no 

significant differences between individual NSAIDs. This effect continued through the 

24 hour post-treatment period.

D. Discussion

In the 7 horses with chronic laminitis, the digital vein concentrations of PGE2 

and LTB4 were not significantly different from corresponding concentrations in the 6 

normal horses. Further, there was no difference in the digital vein concentrations of 

PGE2 and LTB4 after a brief exercise period in any of the horses. These results show 

that horses with hoof pain and lameness from chronic laminitis do not have an
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increase in the plasma eicosanoids in the venous drainage of the foot as compared to 

normal horses even after mild concussion to the foot. These data do not support the 

hypothesis that eicosanoids play a role in mediating the pain and pathology of chronic 

laminitis. However, it must be noted that eicosanoids were not measured in laminar 

tissue which is the site of pathology within the foot. It may be that tissue 

concentrations were not sufficiently elevated to increase levels in the venous blood. 

Other researchers have been able to demonstrate increased circulating levels of 

eicosanoids with a local disease state. An increased plasma leukotriene concentration 

has been reported in children with asthma as compared to healthy subjects [426]. 

Similarly, significantly higher than normal venous plasma prostaglandin and 

thromboxane levels have been described in calves [427] and humans with lung disease 

[428]. Further, plasma PGEj [140] and serum LTB4 [141] levels of patients with 

rheumatoid arthritis are reportedly higher than normal controls and the time course 

of changes of PGEj in blood plasma levels reflects the disease dynamics [140]. It is 

possible that eicosanoids may play a role only in the acute phase of the laminitis 

where hoof pain and the circulatory changes are more pronounced [220].

The overall average PGE2 level in the digital veins of normal and laminitic 

horses was 187.18 pg/ml. Plasma PGE  ̂ levels obtained from other species which 

range from 14.35 to 517 pg/ml [333,349,427,429]. The mean LTB4 level in digital 

plasma as determined in normal and laminitic horses was 74.71 pg/ml. This is 

approximate to the plasma levels in humans which are reported to be less than 100 

pg/ml [430]. It should be noted that eicosanoid concentrations vary considerably



www.manaraa.com

212

depending on the sampling site, species, extraction and method of quantitation. It is 

theorized that actual circulating eicosanoid levels do not exceed 2 pg/ml [24]. 

Therefore, even minor trauma occurring during collection of blood plasma may result 

in ex vivo formation of eicosanoids which accounts for the wide range of 

concentrations reported [24]. These reported values then cannot be regarded as 

absolute and should only be used for comparison when obtained under identical 

circumstances.

One of the objectives of this study was to correlate the severity of hoof pain 

in these laminitic animals with the eicosanoid concentrations, provided that there were 

higher eicosanoid concentrations in laminitic versus normal horses. These horses 

were then to be administered ketoprofen and phenylbutazone in order to determine the 

magnitude and time course of the eicosanoid inhibitory effects of these NSAIDs. This 

objective could not be accomplished due to the lack of significant eicosanoid 

differences in laminitic versus normal horses

Although the pain and lameness in these laminitic horses could not be 

definitively attributed to eicosanoids, both effects were reduced by the systemic 

administration of NSAIDs. Statistically significant overall treatment effects were 

observed for all measures of nociceptive threshold and lameness. However, 

ketoprofen at a dose of 3.63 mg/kg (1.65 times the approved therapeutic dose) 

produced a more pronounced and longer lasting reduction in most of the objective and 

subjective indices of pain and lameness. For lameness grade and HCT, the high dose 

of ketoprofen produced the only significant treatment effects that were different from
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saline upon multiple comparison. This dose of ketoprofen produced effects even at 

24 hours for 3 of the 4 pain tests, including lameness grade. However, it should be 

noted that there were no significant differences between the NSAIDs at any of the 

times for all 4 tests. These treatment means were within + 20% of one another. The 

hoof is somewhat limited in terms of sensitivity as a bioassay for analgesia. This 

device is better at demonstrating the pain relieving effects of potent central analgesics 

[425].

In this study, horses that were administered saline became progressively more 

lame and the number of responsive loci along with the grade of withdrawal response 

increased over the course of the hoof test session as compared to horses administered 

NSAIDs. This would indicate that these animals were becoming hyperalgesic 

(excessive sensitivity to mechanical stimuli) and hyperpathic (an abnormally 

exaggerated subjective response to painful stimuli) [155]. It is known that NSAIDs 

usually do not completely block pain, but primarily reverse the hyperalgesia associated 

with painful conditions [163]. These agents reduce the peripheral afferent discharge 

from hyperalgesic regions [197,266], and also have central anti-hyperalgesic effects 

[272,305] that may not be dependent on eicosanoid inhibition [258,276]. The results 

of this study indicate that NSAIDs reduced the hyperalgesia associated with chronic 

laminitis.

Ketoprofen is approved at a intravenous dosage rate of 2.2 mg/kg, once daily. 

This dose of ketoprofen did not produced any significant effects on hoof pain or 

lameness at 24 hours. This would not support the recommended once daily dosing
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interval for ketoprofen at the 2.2 mg/kg dose. It appears that laminitic horses might 

benefit from a slightly increased dosage rate of ketoprofen. This dose was not 

associated with any apparent clinical toxicity in the animals in this study. Although 

more extensive toxicity studies are needed, one study has shown that up to five times 

the therapeutic dose (11.0 mg/kg,IV) produced no evidence of toxicity after 15 days 

[309].

This study also served to further evaluate the electronic hoof tester and the 

model of chronic pain in horses. There was close agreement among the data from all 

4 pain tests which supports the accuracy and validity of the subjective measures of 

hoof pain and lameness (subjective grade of hoof withdrawal, lameness score) as 

compared to the objective measures (HCT, number of responsive loci). The degree 

of variation in compression applied to a non-responsive locus as determined by the 

CVs of non-responsive loci HCT’s elicited during the experimental day was minimal. 

This indicates that the compression applied to a particular loci was consistent over 

time.
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CHAPTER 7 

GENERAL CONCLUSIONS

Carrageenan-induced synovitis of the equine carpus proved to be self-limiting 

and reproducible model of acute inflammation. The synovitis was associated with 

quantifiable increases in prostaglandin (PGE2) and leukotriene B4 (LTB4) 

concentrations in synovial fluid along with other measurable joint inflammatory 

responses. PGE2 concentrations rose dramatically over time with peak levels 

occurring at 9 hours, with gradual decreases to near baseline at 48 hours. LTB4 

concentrations in synovial fluid peaked early in the inflammatory process at 3 hours 

then quickly returned to baseline. The primarily neutrophilic cellular influx into the 

synovial fluid was extensive, with peak levels occurring from 6 to 9 hours. These 

findings are consistent with other forms of carrageenan-induced inflammation. The 

inflammation was apparently non-septic and transient as horses returned to soundness 

by 48 hours with no subsequent clinical signs of degenerative joint disease.

Phenylbutazone decreased the concentrations of PGE2 from 6 to 12 hours post

dose, whereas the therapeutic and equi molar doses of ketoprofen were associated with 

more short lived prostaglandin inhibitory effects. There was no ketoprofen dose- 

response relationship observed for prostaglandin concentrations or any of the other 

parameters. Further, the therapeutic dose of ketoprofen inhibited prostaglandin 

production to a greater extent than the higher dose at 6 and 9 hours post-dose. This 

may in part be due to the small difference in the two doses chosen and the variability

215
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associated with PGE2 measurement. Future studies using ketoprofen at doses of 4.4 

mg/kg and higher, and perhaps in vitro experiments on the effect of ketoprofen on 

prostaglandin metabolizing enzymes, would possibly clarify this effect.

Although ketoprofen and phenylbutazone had no significant influence on 

synovial fluid LTB4 concentrations, all drugs appeared to elevate the levels as 

compared to saline at the time of peak increases. Phenylbutazone appeared to have 

the greatest potentiation followed by the therapeutic dose of ketoprofen. This effect 

has been reported for many nonsteroidal anti-inflammatory drugs (NSAIDs) and has 

been attributed to a diversion of arachidonic acid substrate after cyclooxygenase 

inhibition to the lipoxygenase pathway. Based on these experiments in this study, 

ketoprofen was not an inhibitor of lipoxygenase. Other reports have both confirmed 

and refuted these results, as inhibition of cyclo- and lipoxygenase enzymes by 

NSAIDs varies depending on the dose, species, metabolite measured and the model 

of inflammation. These studies do support data from other species suggesting that 

leukotrienes are involved in joint inflammation, and development of drugs which 

inhibit their synthesis may be of therapeutic value.

Phenylbutazone was more effective than ketoprofen in alleviating many of the 

clinical signs of pain and inflammation in this model of acute synovitis. 

Phenylbutazone had activity lasting as long as 24 and 48 hours post-dose for some of 

these measures of joint inflammation.

The plasma half-life of the therapeutic dose of ketoprofen was less than one 

hour. Horses with acute synovitis had significantly shorter plasma half-lives than
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normal horses. This can be attributed to the significantly higher synovial fluid 

concentration of ketoprofen in horses with acute synovitis. In addition, ketoprofen 

may have been sequestered in the inflamed joint as the synovial fluid levels were 

greater than plasma concentrations at 3 hours post-administration. Synovial fluid 

levels of ketoprofen in horses with acute synovitis were detectable from 1 to 9 hours 

post-dose while this dose produced significant anti-inflammatory activity from 3 to 9 

hours. Data from other studies suggest that ketoprofen and other NSAIDs may bind 

to tissue components for substantial lengths of time in a dose-dependent manner. Such 

data may help to explain the relatively long duration of action in comparison to the 

short plasma half-life of these drugs.

Digital vein eicosanoid concentrations were not different between horses with 

chronic laminitis and normal horses. These data do not support the hypothesis that 

eicosanoids play a role in mediation of the pain and pathology of chronic laminitis. 

However, eicosanoids may play a role locally in the laminar tissue without producing 

measurable concentrations in the digital vein. Alternatively, these compounds may 

be released during the acute phase of the laminitis where hoof pain and circulatory 

changes are more pronounced. Although the pain and lameness in the laminitic horses 

could not be attributed to eicosanoids, both effects were reduced by the systemic 

administration of NSAIDs at doses which reduced PGEz in synovial fluid. The high 

dose of ketoprofen produced a more pronounced and longer lasting reduction in most 

of the measures of hoof pain and lameness than the other NSAIDs. This dose 

produced effects lasting for 24 hours for most of the pain tests, including lameness
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grade. The therapeutic dose of ketoprofen was effective in 2 of the 4 pain tests at 6 

hours. Horses administered saline became progressively more lame and had 

increasing hoof pain over the course of the experimental session as compared to 

horses administered NSAIDs. These results indicate that rather than producing 

analgesia, these NSAIDs reduced the hyperalgesia associated with chronic laminitis. 

This effect has been well documented for NSAIDs and may be independent of 

eicosanoid inhibition. The severity of hoof pain could not be correlated with 

eicosanoid concentrations in the horses with chronic laminitis due to the lack of 

significant differences in normal and laminitic horses.

Procedures for extraction and measurement of PGE2 and LTB4 equine plasma 

and synovial were evaluated. The solid phase extraction procedure that was developed 

resulted in adequate recovery for both compounds from equine biological samples. 

An enzyme-linked immunosorbent assay (ELISA) was used for quantitation of LTB4 

and PGEz that had not been previously documented in the horse. Available 

information suggested that considerable cross reactivity with PGEj occurred in the 

PGE2 ELISA while the LTB4 was very specific. The results from the validation 

procedures for the PGEj ELISA indicated that the assay was specific for this 

compound in equine synovial fluid.

In conclusion, the results of these studies indicate that NSAIDs differ in 

potency and efficacy depending on the type of pain and inflammation present. In 

acute experimentally-induced synovitis, where the duration of clinical signs lasted 

approximally 48 hours, phenylbutazone was more potent in relieving the joint
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inflammation and pain than either the therapeutic or the equimolar dose of ketoprofen. 

In naturally occurring chronic laminitis, where horses experience pain and pathology 

within the foot for months or years, the high dose of ketoprofen was more potent than 

either the therapeutic dose of ketoprofen or the equimolar dose of phenylbutazone.
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